Тригонометрия. обратные тригонометрические функции

График функции y=cost, введение понятия арккосинуса

Рассмотрим график функции

Построим график по точкам. Отметим на оси абсцисс точки кратные

Отметим точки, кратные

Для всех этих аргументов нам известны значения функции, отметим их на оси ординат (рис. 1).

Почему был выбран именно промежуток  

1. На этом промежутке функция пробегает все свои значения от  до .

2. На этом промежутке функция монотонно убывает. Если  то функция убывает,

Мы задали функцию, а значит, есть две задачи – прямая и обратная.

Прямая задача: задаем значение  получаем значение .

Например: Если  если

Обратная задача: какие значения аргумента из промежутка соответствуют заданному значению функции?

Если  если  если

Единственное решение обратной задачи обеспечивает монотонность функции на промежутке .

При каких значениях аргумента достигается значение функции  (рис. 2).

А как определить, как назвать это число

Значение аргумента  косинус которого равен , называется арккосинусом числа

Каждому  соответствует единственное , и наоборот, каждое значение  достигается при единственном значении аргумента из промежутка , это значение  и называется арккосинусом числа .

Пример:

По графику функции мы можем считывать значения арккосинуса.

Понятие обратной тригонометрической функции

Вспомним, когда мы встречаемся с таким понятием как обратная функция. Например, рассмотрим функцию возведения в квадрат. Пусть у нас есть квадратная комната со сторонами по 2 метра и мы хотим вычислить ее площадь. Для этого по формуле пощади квадрата возводим двойку в квадрат и в результате получаем 4 м2. Теперь представим себе обратную задачу: мы знаем площадь квадратной комнаты и хотим найти длины ее сторон. Если мы знаем, что площадь равна все тем же 4 м2, то выполним обратное действие к возведению в квадрат – извлечение арифметического квадратного корня, который нам даст значение 2 м.

Таким образом, для функции возведения числа в квадрат обратной функцией является извлечение арифметического квадратного корня.

Конкретно в указанном примере у нас не возникло проблем с вычислением стороны комнаты, т.к. мы понимаем, что это положительное число. Однако если оторваться от этого случая и рассмотреть задачу более общим образом: «Вычислить число, квадрат которого равен четырем», мы столкнемся с проблемой – таких чисел два. Это 2 и -2, т.к.  тоже равна четырем. Получается, что обратная задача в общем случае решается неоднозначно, и действие определения числа, которое в квадрате дало известное нам число? имеет два результата. Это удобно показать на графике:

 
 

А это значит, что такой закон соответствия чисел мы не можем назвать функцией, поскольку для функции одному значению аргумента соответствует строго одно значение функции.

Для того чтобы ввести именно обратную функцию к возведению в квадрат и было предложено понятие арифметического квадратного корня, который дает только неотрицательные значения. Т.е. для функции  обратной функцией считается .

Аналогично существуют и функции, обратные к тригонометрическим, их называют обратными тригонометрическими функциями. К каждой из рассмотренных нами функций существует своя обратная, их называют: арксинус, арккосинус, арктангенс и арккотангенс.

Эти функции решают задачу вычисления углов по известному значению тригонометрической функции. Например, с использованием таблицы значений основных тригонометрических функций можно вычислить синус какого угла равен . Находим это значение в строке синусов и определяем, какому углу оно соответствует. Первое, что хочется ответить, что это угол  или , но если у вас в распоряжении таблица значений до , вы тут же заметите еще одного претендента на ответ, — это угол  или . А если мы вспомним о периоде синуса, то поймем, что углов, при которых синус равен , бесконечное множество. И такое множество значений углов, соответствующих данному значению тригонометрической функции, будет наблюдаться и для косинусов, тангенсов и котангенсов, т.к. все они обладают периодичностью.

Т.е. мы сталкиваемся с той же проблемой, которая была для вычисления значения аргумента по значению функции для действия возведения в квадрат. И в данном случае для обратных тригонометрических функций было введено ограничение области значений, которые они дают при вычислении. Это свойство таких обратных функций называют сужением области значений, и оно необходимо для того, чтобы их можно было называть функциями.

Для каждой из обратных тригонометрических функций диапазон углов, которые она возвращает, выбран свой, и мы их рассмотрим отдельно. Например, арксинус возвращает значения углов в диапазоне от  до .

Умение работать с обратными тригонометрическими функциями нам пригодится при решении тригонометрических уравнений.

Сейчас мы укажем основные свойства каждой из обратных тригонометрических функций. Кто захочет познакомиться с ними более подробно, обратитесь к главе «Решение тригонометрических уравнений» в программе 10 класса.

Соотношения между обратными тригонометрическими функциями

Между рассмотренными обратными тригонометрическими функциями существует два полезных соотношения, которые позволяют выражать одну функцию через другую:

На этом уроке мы с вами рассмотрели такое понятие как обратная тригонометрическая функция, узнали их виды, свойства и построили графики.

В практической части урока мы займемся преобразованием выражений, содержащих обратные тригонометрические функции.

Полезные ссылки:

1)      Алгебра 10 класс: «Арккосинус» 

2)      Алгебра 10 класс: «Арксинус» 

3)      Алгебра 10 класс: «Арктангенс и решение уравнения tg x=a» 

4)      Алгебра 10 класс: «Арккотангенс и решение уравнения ctg x=a» 

Формулы суммы и разности

Аналогичным способом, получим формулу суммы арксинусов.

Установим пределы применимости формулы. Чтобы не иметь дела с громоздкими выражениями, введем обозначения: ,   . Формула применима при. Далее замечаем, что, поскольку         то при разных знаках у и , и также разного знака и поэтому неравенства     выполняются. Условие различных знаков у и можно написать одним неравенством: .   То есть при     формула справедлива.

Теперь рассмотрим случай и , или и . Тогда условие применимости формулы заключается в выполнении неравенства: .   Поскольку косинус монотонно убывает при значениях аргумента в интервале от , до , то возьмем косинус от левой и правой части этого неравенства и преобразуем выражение:;;;. Поскольку   и   ;   то входящие сюда косинусы не отрицательные. Обе части неравенства положительные. Возводим их в квадрат и преобразуем косинусы через синусы:;. Подставляем   ;;;.

Итак, полученная формула справедлива при     или .

Теперь рассмотрим случай     и   . Здесь аргумент синуса принимает значения:   .   Его нужно привести к интервалу области значения арксинуса  

.

Итак, при и.

Заменив и на и , имеем при и. Выполняем преобразования: при и. Или при и.

Итак, мы получили следующие выражения для суммы арксинусов: при или ; при и ; при и .

Аналогичным способом получаются остальные формулы:

при или ; при и ; при и ;

при ; при ;

при ; при ;

при ; при ; при ;

при ; при ; при .

Нахождение значения arcsin через arccos, arctg, arcctg и т.п.

Задача нахождения значения арксинуса числа через известный арккосинус этого числа, арккосинуса через известный арксинус, арктангенса через арккотангенс и арккотангенса через известный арктангенс решается очень просто – достаточно использовать формулы arcsin a+arccos a=π/2 и arctg a+arcctg a=π/2 (смотрите ).

Например, пусть нам известно, что arcsin a=−π/12, а нужно найти значение arccos a. Вычисляем нужное нам значение арккосинуса: arccos a=π/2−arcsin a=π/2−(−π/12)=7π/12.

Куда интереснее обстоит дело, когда по известному значению арксинуса или арккосинуса числа a требуется найти значение арктангенса или арккотангенса этого числа a или наоборот. Формул, задающих такие связи, мы, к сожалению, не знаем. Как же быть? Разберемся с этим на примере.

Пусть нам известно, что арккосинус числа a равен π/10, и нужно вычислить значение арктангенса этого числа a. Решить поставленную задачу можно так: по известному значению арккосинуса найти число a, после чего найти арктангенс этого числа. Для этого нам сначала потребуется таблица косинусов, а затем – таблица тангенсов.

Угол π/10 радиан – это угол 18 градусов, по таблице косинусов находим, что косинус 18 градусов приближенно равен 0,9511, тогда число a в нашем примере есть 0,9511.

Осталось обратиться к таблице тангенсов, и с ее помощью найти нужное нам значение арктангенса 0,9511, оно приближенно равно 43 градусам 34 минутам.

Эту тему логически продолжает материал статьи вычисление значений выражений, содержащих arcsin, arccos, arctg и arcctg.

Список литературы.

  • Алгебра: Учеб. для 9 кл. сред. шк./Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова; Под ред. С. А. Теляковского.- М.: Просвещение, 1990.- 272 с.: ил.- ISBN 5-09-002727-7
  • Башмаков М. И. Алгебра и начала анализа: Учеб. для 10-11 кл. сред. шк. — 3-е изд. — М.: Просвещение, 1993. — 351 с.: ил. — ISBN 5-09-004617-4.
  • Алгебра и начала анализа: Учеб. для 10-11 кл. общеобразоват. учреждений / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын и др.; Под ред. А. Н. Колмогорова.- 14-е изд.- М.: Просвещение, 2004.- 384 с.: ил.- ISBN 5-09-013651-3.
  • И. В. Бойков, Л. Д. Романова. Сборникк задач для подготовки к ЕГЭ, часть 1, Пенза 2003.
  • Брадис В. М. Четырехзначные математические таблицы: Для общеобразоват. учеб. заведений. — 2-е изд. — М.: Дрофа, 1999.- 96 с.: ил. ISBN 5-7107-2667-2

Некогда разбираться?

Свойство арккосинуса и арксинуса, доказательство тождества

Задача 4: Доказать тождество:

Проиллюстрируем тождество на числовой окружности (рис. 9).

На линии косинусов отметим число  проведём перпендикуляр до пересечения с окружностью, получим точку  В полученном прямоугольном треугольнике катет равен  гипотенуза равна 1.

Такое же значение  отложим на линии синусов. Проведем перпендикуляр до пересечения с окружностью, получим точку  В этом прямоугольном треугольнике катет также равен  гипотенуза равна 1.

Из равенства прямоугольных треугольников следует равенство углов:

 а значит

Доказательство:

Пусть

Следует доказать:

Определим промежутки, которым принадлежат углы

Оба угла принадлежат промежутку, на котором   монотонно убывает, поэтому из равенства косинусов будет следовать равенство аргументов.

Вычислим

Тождество доказано.

Арксинус и арккосинус − теория, примеры и решения

Функция арксинус и ее график

Как известно, функция синус определена в интервале и не является монотонной функцией (т.е. не является возрастающей или убывающей во всей области определения функции (Рис.1) (подробнее о функции синус смотрите на странице Синус и косинус. Онлайн калькулятор). А для того, чтобы функция имела обратную, она должна быть монотонной.

Однако, функцию синус можно разделить на интервалы, где она монотонна. Эти интервалы:

По теореме об обратной функции, на каждом из указанных отрезков функция sin x имеет обратную функцию. Отметим, что это различные обратные функции. Однако, предпочтение отдается обратной функции в отрезке . Обратную функцию обозначают x=arcsin y. Поменяв местами x и y, получим:

Функция (1) − это функция, обратная к функции

График функции арксинус можно получить из графика функции с помощью преобразования симметрии относительно прямой y=x (Рис.2).

Свойства функции арксинус.

  1. Область определения функции: .
  2. Область значений функции: .
  3. Функция является нечетной: .
  4. Функция возрастает.
  5. Функция непрерывна.

Решим тригонометрическое уравнение

При |a|>1 это уравнение не имеет решения, т.к. не существует такое число x, при котором sin x>1 (см. график функции синус (Рис.1). При |a|≤1, в отрезке (дуга DAB) уравнение (2) имеет одно решение (см. Рис.3):

В отрезке (дуга DCB) функция синус убывает и принимает значения от 1 до −1. Следовательно в этом отрезке уравнение (2) также имеет решение:

Действительно:

А из

следует

т.е.

Таким образом уравнение (3) имеет два решения в отрезке :

которые совпадают при |a|=1.

Поскольку функция синус периодичная с основным периодом , имеем

Тогда получим решение (2) в виде

Решения (3) и (4) удобно представить одним уравнением:

Действительно. При четных k (k=2n) из уравнения (5) получают все решения, представленные уравнением (3), а при нечетных k (k=2n+1) − все решения, представленные уравнением (4).

При a=1, arcsin a и π−arcsin a совпадают (т.к. ), следовательно решение уравнения sin t=1 имеет вид:

При |a|=−1, из (3) и (4) следует:

Но поворот эквивалентно повороту . То есть уравнения (6) и (7) эквивалентны. Тогда решение уравнения sin t=−1 запишем в виде:

При |a|=0, из (3) и (4) имеем следующее решение уравнения sin t=0:

Пример 1. Решить тригонометрическое уравнение:

Решение. Воспользуемся формулой (5):

т.е.

Пример 2. Решить тригонометрическое уравнение:

Решение. Воспользуемся формулой (5):

т.е.

Функция арккосинус и ее график

Как известно, функция косинус определена в интервале и не является монотонной функцией (Рис.4) (подробнее о функции косинус смотрите на странице Синус и косинус. Онлайн калькулятор). А для того, чтобы функция имела обратную, она должна быть монотонной.

Однако, функцию косинус можно разделить на интервалы, где она монотонна. Эти интервалы:

По теореме об обратной функции, на каждом из указанных отрезков функция cos x имеет обратную функцию. Это различные обратные функции. Однако, предпочтение отдается обратной функции в отрезке . Обратную функцию оброзначают x=arccos y. Поменяв местами x и y, получим:

Функция (8) − это функция, обратная к функции

График функции арксинус можно получить из графика функции с помощью преобразования симметрии относительно прямой y=x (Рис.5).

Свойства функции арксинус.

  1. Область определения функции: .
  2. Область значений функции: .
  3. Функция не является ни четной ни нечетной (так как функция не симметрична ни относительно начала координит, ни относительно оси Y).
  4. Функция убывает.
  5. Функция непрерывна.

Решим тригонометрическое уравнение

При |a|>1 это уравнение не имеет решения, т.к. не существует такое число x, при котором cos x>1 (см. график функции косинус (Рис.4). При |a|≤1, в отрезке [0; π] (дуга ABC) уравнение (9) имеет одно решение t1=arccos a. В отрезке [−π; 0] (дуга CDA) уравнение (9) имеет одно решение t2=−arccos a(см. Рис.6):

Таким образом, в интервале [−π; π] уравнение (9) имеет два решения y=± arccos a, которые совпадают при a=1.

Поскольку функция косинус периодичная с основным периодом :

то общее решение (9) имеет следующий вид:

При a=1, числа arccos a и −arccos a совпадают (они равны нулю), тогда решение уравнения cos t=1 можно записать так:

При a=−1, имеем cos t=−1,

При a=0, имеем cos t=0,

Решение тригонометрического уравнения cos t=0 можно записать одним уравнением:

Пример 1. Решить тригонометрическое уравнение:

Решение. Воcпользуемся формулой (10):

Так как , то

Пример 2. Решить следующее тригонометрическое уравнение:

Решение. Используя формулу (10), имеем

Так как (), то

Пример 3. Решить следующее тригонометрическое уравнение:

Решение. Используя формулу (10), имеем

С помощью онлайн калькулятора вычисляем : . Тогда решение можно записать так:

Вывод, заключение

Мы рассмотрели понятие арккосинуса, научились вычислять и считывать значения арккосинуса с помощью графика и с помощью числовой окружности. Решили триповые задачи. На следующем уроке мы используем арккосинус для решения тригонометрических уравнений.

Список литературы

1. Алгебра и начала анализа, 10 класс (в двух частях). Учебник для общеобразовательных учреждений (профильный уровень) под ред. А. Г. Мордковича. –М.: Мнемозина, 2009.

2. Алгебра и начала анализа, 10 класс (в двух частях). Задачник  для общеобразовательных учреждений (профильный уровень) под ред. А. Г. Мордковича. –М.: Мнемозина, 2007.

3. Виленкин Н.Я., Ивашев-Мусатов О.С., Шварцбурд С.И. Алгебра и математический анализ для 10 класса (учебное пособие для учащихся школ и классов с углубленным изучением математики).-М.: Просвещение, 1996.

4. Галицкий М.Л., Мошкович М.М., Шварцбурд С.И. Углубленное изучение алгебры и математического анализа.-М.: Просвещение, 1997.

5. Сборник задач по математике для поступающих во ВТУЗы (под ред. М.И.Сканави).-М.:Высшая школа, 1992.

6. Мерзляк А.Г., Полонский В.Б., Якир М.С. Алгебраический тренажер.-К.: А.С.К., 1997.

7. Саакян С.М., Гольдман А.М., Денисов Д.В. Задачи по алгебре и началам анализа (пособие для учащихся 10-11 классов общеобразов. учреждений).-М.: Просвещение, 2003.

8. Карп А.П. Сборник задач по алгебре и началам анализа : учеб. пособие для 10-11 кл. с углубл. изуч. математики.-М.: Просвещение, 2006.

Домашнее задание

Алгебра и начала анализа, 10 класс (в двух частях). Задачник  для общеобразовательных учреждений (профильный уровень) под ред. А. Г. Мордковича. –М.: Мнемозина, 2007.

№№ 21.13 – 21.15, 21.17, 21.23, 21.47

Дополнительные веб-ресурсы

1. Математика (Источник).

2. Интернет-портал Problems.ru (Источник).

3. Образовательный портал для подготовки к экзаменам (Источник).

Ссылка на основную публикацию