Математические функции excel

Как составить таблицу в Excel с формулами

Чтобы сэкономить время при введении однотипных формул в ячейки таблицы, применяются маркеры автозаполнения. Если нужно закрепить ссылку, делаем ее абсолютной. Для изменения значений при копировании относительной ссылки.

Простейшие формулы заполнения таблиц в Excel:

  1. Перед наименованиями товаров вставим еще один столбец. Выделяем любую ячейку в первой графе, щелкаем правой кнопкой мыши. Нажимаем «Вставить». Или жмем сначала комбинацию клавиш: CTRL+ПРОБЕЛ, чтобы выделить весь столбец листа. А потом комбинация: CTRL+SHIFT+»=», чтобы вставить столбец.
  2. Назовем новую графу «№ п/п». Вводим в первую ячейку «1», во вторую – «2». Выделяем первые две ячейки – «цепляем» левой кнопкой мыши маркер автозаполнения – тянем вниз.
  3. По такому же принципу можно заполнить, например, даты. Если промежутки между ними одинаковые – день, месяц, год. Введем в первую ячейку «окт.15», во вторую – «ноя.15». Выделим первые две ячейки и «протянем» за маркер вниз.
  4. Найдем среднюю цену товаров. Выделяем столбец с ценами + еще одну ячейку. Открываем меню кнопки «Сумма» — выбираем формулу для автоматического расчета среднего значения.

Чтобы проверить правильность вставленной формулы, дважды щелкните по ячейке с результатом.

Функция ПРЕДСКАЗ для прогнозирования будущих значений в Excel

Функция ПРЕДСКАЗ в Excel позволяет с некоторой степенью точности предсказать будущие значения на основе существующих числовых значений, и возвращает соответствующие величины. Например, некоторый объект характеризуется свойством, значение которого изменяется с течением времени. Такие изменения могут быть зафиксированы опытным путем, в результате чего будет составлена таблица известных значений x и соответствующих им значений y, где x – единица измерения времени, а y – количественная характеристика свойства. С помощью функции ПРЕДСКАЗ можно предположить последующие значения y для новых значений x.

Логическая формула для функции ДЛСТР в условном форматировании

Пример 3. Среди имеющегося набора текстовых данных в таблице Excel необходимо осуществить выделение тех ячеек, количество символов в которых превышает 12.

Исходные данные приведены в таблице 1:

Исходная строка
Добрый день, класс. Я ваш новый ученик
Добрый день, класс.
Добрый день
Я ваш учитель
Я ваш

Решение данной задачи производится путем создания правила условного форматирования. На вкладке «Главная» в блоке инструментов «Стили» выбираем «Условное форматирование», в выпадающем меню указываем на опцию «Создать правило» (вид окна показан на рисунке 3).

Рисунок 3 – Вид окна «Создать правило».

В окне в блоке «Выберите тип правила» выбираем «Использовать формулу для определения форматируемых ячеек», в следующем поле вводим формулу: =ДЛСТР(A2)>12, после чего нажимаем кнопку формат и задаем необходимый нам формат выбранных полей. Ориентировочный вид после заполнения данного окна показан выше на рисунке.

После этого нажимаем на кнопку «Ок» и переходим в окно «Диспетчер правил условного форматирования» (рисунок 4).

Рисунок 4 – Вид окна «Диспетчер правил условного форматирования».

В столбце «Применяется к» задаем необходимый нам диапазон ячеек с исходными данными таблицы и нажимаем кнопку «Ок». Полученный результат приведен на рисунке 5.

Рисунок 5 – Окончательный результат.

Формула с ДЛСТР для подсчета количества слов в ячейке Excel

Функция ДЛСТР активно используется в формулах Excel при комбинации с другими текстовыми функциями для решения более сложных задач. Например, при подсчете количества слов или символов в ячейке и т.п.

Корреляционный анализ в Excel

Корреляционный анализ помогает установить, есть ли между показателями в одной или двух выборках связь. Например, между временем работы станка и стоимостью ремонта, ценой техники и продолжительностью эксплуатации, ростом и весом детей и т.д.

Если связь имеется, то влечет ли увеличение одного параметра повышение (положительная корреляция) либо уменьшение (отрицательная) другого. Корреляционный анализ помогает аналитику определиться, можно ли по величине одного показателя предсказать возможное значение другого.

Коэффициент корреляции обозначается r. Варьируется в пределах от +1 до -1. Классификация корреляционных связей для разных сфер будет отличаться. При значении коэффициента 0 линейной зависимости между выборками не существует.

Рассмотрим, как с помощью средств Excel найти коэффициент корреляции.

Для нахождения парных коэффициентов применяется функция КОРРЕЛ.

Задача: Определить, есть ли взаимосвязь между временем работы токарного станка и стоимостью его обслуживания.

Ставим курсор в любую ячейку и нажимаем кнопку fx.

  1. В категории «Статистические» выбираем функцию КОРРЕЛ.
  2. Аргумент «Массив 1» — первый диапазон значений – время работы станка: А2:А14.
  3. Аргумент «Массив 2» — второй диапазон значений – стоимость ремонта: В2:В14. Жмем ОК.

Чтобы определить тип связи, нужно посмотреть абсолютное число коэффициента (для каждой сферы деятельности есть своя шкала).

Для корреляционного анализа нескольких параметров (более 2) удобнее применять «Анализ данных» (надстройка «Пакет анализа»). В списке нужно выбрать корреляцию и обозначить массив. Все.

Полученные коэффициенты отобразятся в корреляционной матрице. Наподобие такой:

ПРЕДСКАЗ и ТЕНДЕНЦИЯ в Excel

При добавлении линейного тренда на график Excel, программа может отображать уравнение прямо на графике (смотри рисунок ниже). Вы можете использовать это уравнение для расчета будущих продаж. Функции FORECAST (ПРЕДСКАЗ) и TREND (ТЕНДЕНЦИЯ) дают тот же результат.

Пояснение: Excel использует метод наименьших квадратов, чтобы найти линию, которая соответствует точкам наилучшим образом. Значение R 2 равно 0.9295, что является очень хорошим значением. Чем оно ближе к 1, тем лучше линия соответствует данным.

  1. Используйте уравнение для расчета будущих продаж:


Используйте функцию FORECAST (ПРЕДСКАЗ), чтобы рассчитать будущие продажи:

Примечание: Когда мы протягиваем функцию FORECAST (ПРЕДСКАЗ) вниз, абсолютные ссылки ($B$2:$B$11 и $A$2:$A$11) остаются такими же, в то время как относительная ссылка (А12) изменяется на A13 и A14.

  1. Если вам больше нравятся формулы массива, используйте функцию TREND (ТЕНДЕНЦИЯ) для расчета будущих продаж:

Примечание: Сначала выделите диапазон E12:E14. Затем введите формулу и нажмите Ctrl+Shift+Enter. Строка формул заключит ее в фигурные скобки, показывая, что это формула массива . Чтобы удалить формулу, выделите диапазон E12:E14 и нажмите клавишу Delete.

Особенности использования функции EXP в Excel

Функция EXP имеет следующую синтаксическую запись:

=EXP(число)

Единственным и обязательным для заполнения аргументом является число, которое характеризует числовое значение показателя степени, в которую необходимо возвести константу e.

Примечания 1:

  1. Функции LN и EXP являются противоположными друг другу по возвращаемому результату. Логарифм указывает, в какую степень необходимо возвести основание (в случае натурального логарифма lnx показатель равен примерно 2,718), чтобы получить показатель x. Функция EXP определяет показатель x.
  2. Аргумент число может быть задан любым числом из диапазона действительных чисел (целые и дробные отрицательные, положительные значения и 0). Результат выполнения =EXP(0) равен 1.
  3. В качестве аргумента EXP могут быть переданы логические значения ИСТИНА и ЛОЖЬ, которые будут автоматически преобразованы к числовым значениям 1 и 0 соответственно.
  4. Если в качестве аргумента число были переданы не преобразуемые к числовому значению имя или текстовая строка, функция EXP вернет код ошибки #ЗНАЧ!.
  5. Функцию можно использовать в качестве формулы массива.

Примечания 2:

  1. Как известно, число e является показателем степени натурального логарифма, который записывается, например, так: ln10, то есть, логарифм с основанием 2,718 из 10. Само число e является показателем роста для любого процесса, зависимые величины которого изменяются непрерывно с изменением независимых. В качестве примеров могут служить такие процессы, как деление живых клеток организма (через определенный период времени одна клетки делится на две, затем каждая из этих двух делится еще на две и так далее) или распад радиоактивных веществ (зная коэффициент распада можно узнать, сколько радиоактивного вещества уже распалось на более простые элементы).
  2. Число e используется для аппроксимации (создания упрощенной модели) систем, величины которых изменяются неравномерно.
  3. Чтобы понять физический смысл числа e, рассмотрим процесс роста капиталовложений в банке. Например, банк предложил 100%-е увеличение капитала по истечению определенного периода, например, 12 месяцев. То есть, прибыль вкладчика удвоится. Предположим, что процесс роста капитала является непрерывным на протяжении года. Тогда для расчета суммы капитала по истечению 6 месяцев можно использовать формулу R=(1+100%/2)2, где R – рост капитала, 2 – количество полупериодов роста. Если мы решим определить рост за 4 месяца, формула примет вид R=(1+100%/3)3, за 3 месяца — R=(1+100%/4)4 и т. д. В общем случае имеем формулу R=(1+100%/x)x. Если x→∞ (стремится к бесконечности) R (рост) примет значение 2,718. Из этого следует, что максимально возможный 100%-й рост за мельчайший период времени не может превысить значение 2,718, которое и является числом e (числом Эйлера). В общем случае любой рост может быть выражен формулой R=ep*t, где p – прирост величины (например, не 100%, как в рассмотренном выше примеров, а 30%, то есть 0,3), а t – время (например, если депозитный договор рассчитан на 5 лет, то t=5). Тогда для расчета в Excel достаточно ввести формулу =EXP(0,3*5).

Пример

Скопируйте образец данных из следующей таблицы и вставьте их в ячейку A1 нового листа Excel. Чтобы отобразить результаты формул, выделите их и нажмите клавишу F2, а затем — клавишу ВВОД. При необходимости измените ширину столбцов, чтобы видеть все данные.

Натуральный логарифм числа 86

Натуральный логарифм числа e

Натуральный логарифм числа e, возведенного в третью степень

Функция LN в Excel предназначена для расчета натурального логарифма числа и возвращает соответствующее числовое значение. Натуральным логарифмом является логарифм с основанием e (число Эйлера, равное примерно 2,718).

Функция LOG в Excel используется для расчета логарифма числа, при этом основание логарифма может быть указано явно в качестве второго аргумента данной функции.

Функция LOG10 в Excel предназначена для расчета логарифма числа с основанием 10 (десятичный логарифм).

Депозитный калькулятор со сложным процентом в Excel

Пример 2. Клиент банка внес депозит на сумму 50000 рублей с процентной ставкой 14,5% (сложные проценты). Определить, сколько времени потребуется на удвоение вложенной суммы?

Интересный факт! Для быстрого решения данной задачи можно воспользоваться эмпирическим способом приблизительной оценки сроков (в годах) на удвоение инвестиций, вложенных под сложный процент. Так называемое правило 72 (или 70 или правило 69). Для этого нужно воспользоваться простой формулой – число 72 разделить на процентную ставку: 72/14,5 = 4,9655 лет. Главный недостаток правила «магического» числа 72 заключается в погрешности. Чем выше процентная ставка, тем выше погрешность в правиле 72. Например, при процентной ставки 100% годовых погрешность в годах достигает до 0,72 (а в процентах это аж 28%!).

Для точного расчета сроков удвоения инвестиций будем использовать функцию LOG. За одно и проверим величину погрешности правила 72 при процентной ставке 14,5% годовых.

Вид исходной таблицы:

Для расчета будущей стоимости инвестиции при известной процентной ставке можно использовать следующую формулу: S=A(100%+n%) t , где:

  • S – ожидаемая сумма по истечению срока;
  • A – размер депозита;
  • n – процентная ставка;
  • t – срок хранения депозитных средств в банке.

Для данного примера эту формулу можно записать как 100000=50000*(100%+14,5%) t или 2=(100%+14,5%) t . Тогда для нахождения t можно переписать уравнение как t=log(114,5%)2 или t=log1,1452.

Для нахождения значения t запишем следующую формулу сложного процента по депозиту в Excel:

  • B4/B2 – соотношение ожидаемой и начальной сумм, которое является показателем логарифма;
  • 1+B3 – прирост процентов (основание логарифма).

В результате расчетов получим:

Депозит удвоится спустя немного более чем 5 лет. Для точного определения лет и месяцев воспользуемся формулой:

Функция ОТБР отбрасывает в дробном числе все что после запятой подобно функции ЦЕЛОЕ. Разница между функциями ОТБР и ЦЕЛОЕ заключается лишь в расчетах с отрицательными дробными числами. Кроме того, ОТБР имеет второй аргумент где можно указать количество оставляемых знаков после запятой. Поэтом в данном случаи можно воспользоваться любой из этих двух функций на выбор пользователя.

Получилось 5 лет и 1 месяц и 12 дней. Теперь сравним точные результаты с правилом 72 и определим величину погрешности. Для данного примера формула, следующая:

Мы должны умножить значение ячейки B3 на 100 так как ее текущее значение 0,145, которое отображается в процентном формате. В результате:

После скопируем формулу из ячейки B6 в ячейку B8, а в ячейке B9:

Посчитаем сроки погрешности:

Затем в ячейку B10 снова скопируем формулу из ячейки B6. В результате получим разницу:

И наконец посчитаем разницу в процентах, чтобы проверить как изменяется размер отклонения и насколько существенно влияет рост процентной ставки на уровень расхождения правила 72 и факта:

Теперь для наглядности пропорциональной зависимости роста погрешности и роста уровня процентной ставки повысим процентную ставку до 100% годовых:

На первый взгляд разница погрешности не существенная по сравнению с 14,5% годовых — всего около 2-ух месяцев и 100% годовых — в пределах 3-х месяцев. Но доля погрешности в сроках окупаемости более чем ¼, а точнее 28%.

Составим простой график для визуального анализа как коррелируется зависимость изменения процентной ставки и процента погрешности правила 72 от факта:

Чем выше процентная ставка, тем хуже работает правило 72. В итоге можно сделать следующий вывод: до 32,2% процентов годовых можно смело пользоваться правилом 72. Тогда погрешность составляет менее 10-ти процентов. Вполне сойдет если не требуются точные, но сложные расчеты по срокам окупаемости инвестиций в 2 раза.

Функции, связанные с возведением в степень и извлечением корня

Функция КОРЕНЬ

Извлекает квадратный корень из числа.

Синтаксис: =КОРЕНЬ(число), где аргумент число – является числом, либо ссылкой на ячейку с числовым значением.

Пример использования:

=КОРЕНЬ(4) – функция вернет значение 2.

Если возникает необходимость извлечь из числа корень со степенью больше 2, данное число необходимо возвести в степень 1/(показатель корня). Например, для извлечения кубического корня из числа 27 необходимо применить следующую формулу: =27^(1/3) – результат 4.

Функция СУММКВРАЗН

Производит суммирование возведенных в квадрат разностей между элементами двух диапазонов либо массивов.

Синтаксис: =СУММКВРАЗН(диапазон1; диапазон2), где первый и второй аргументы являются обязательными и содержать ссылки на диапазоны либо массивы с числовыми значениями. Текстовые и логические значения игнорируются.

Вертикальные и горизонтальные диапазоны и массивы в данной функции не различаются, но должны иметь одинаковую размерность.

Пример использования:

=СУММКВРАЗН({1;2};{0;4}) – функция вернет значение 5. Альтернативное решение =(1-0)^2+(2-4)^2.

Функция СУММКВ

Воспроизводит числа, заданные ее аргументами, в квадрат, после чего их суммирует.

Синтаксис: =СУММКВ(число1; ), где число1 … число255, число, либо ссылки на ячейки и диапазоны, содержащие числовые значения. Максимальное число аргументов 255, минимальное 1. Все текстовые и логические значения игнорируются, за исключением случаев, когда они заданы явно. В последнем случае текстовые значения возвращают ошибку, логические 1 для ИСТИНА, 0 для ЛОЖЬ.

Пример использования:

=СУММКВ(2;2) – функция вернет значение 8.=СУММКВ(2;ИСТИНА) – возвращает значение 5, так как ИСТИНА приравнивается к единице.

В данном примере текстовое значение игнорируется, так как оно задано через ссылку на диапазон.

Функция СУММСУММКВ

Возводит все элементы указанных диапазонов либо массивов в квадрат, суммирует их пары, затем выводит общую сумму.

Синтаксис: =СУММСУММКВ(диапазон1; диапазон2), где аргументы являются числами, либо ссылками на диапазоны или массивы.

Функция при обычных условиях возвращает точно такой же результат, как и функция СУММКВ. Но если в качестве элемента одного из аргументов будет указано текстовое или логическое значение, то проигнорирована будет вся пара элементов, а не только сам элемент.

Пример использования:

Рассмотрим применение функции СУММСУММКВ и СУММКВ к одним и тем же данным.

В первом случае функции возвращают один и тот же результат:

  • Алгоритм для СУММСУММКВ =(2^2+2^2) + (2^2+2^2) + (2^2+2^2);
  • Алгоритм для СУММКВ =2^2 +2 ^2 + 2^2 + 2^2 + 2^2 + 2^2.

Во втором случае функции вернут разные результаты из-за несущественных различий в алгоритме вычисления (части выделенные красным игнорируются, т.к. возвращают ошибку):

  • Алгоритм для СУММСУММКВ =(2^2+2^2) + (текст^2+2^2) + (2^2+2^2);
  • Алгоритм для СУММКВ =2^2 +2 ^2 + «текст»^2 + 2^2 + 2^2 + 2^2.

Функция СУММРАЗНКВ

Аналогична во всем функции СУММСУММКВ за исключение того, что для пар соответствующих элементов находится не сумма, а их разница.

Синтаксис: =СУММРАЗНКВ(диапазон1; диапазон2), где аргументы являются числами, либо ссылками на диапазоны или массивы.

Пример использования:

Функция ПРОМЕЖУТОЧНЫЕ.ИТОГИ()

Данная функция предназначена для работы со структурой промежуточных итогов. Ознакомиться с применением такой структуры можно в соответствующей статье категории Уверенное использование Excel на нашем сайте.

Во время задания подобной структуры, рассматриваемая функция создается автоматически. Смысл ее использования таков, что она игнорирует значения в ячейках, высчитанные с использованием промежуточных итогов. Рассмотрим синтаксис и пример использования.

Синтаксис: =ПРОМЕЖУТОЧНЫЕ.ИТОГИ(номер_функции; ссылка1; ; …), где

  • номер_функции – обязательный аргумент. Число от 1 до 11 либо от 101 до 111, указывающее на то, какую функцию использовать для расчета и в каком режиме (подробнее читайте ниже);
  • ссылка1 и последующие ссылки – ссылки на ячейки или диапазоны ячеек, содержащие значения для расчета. Минимальное количество ссылок — 1, максимальное — 254.

Соотношение номера функции с конкретной функцией:

  • 1 – СРЗНАЧ;
  • 2 – СЧЁТ;
  • 3 – СЧЁТЗ;
  • 4 – МАКС;
  • 5 – МИН;
  • 6 – ПРОИЗВЕД;
  • 7 – СТАНДОТКЛОН;
  • 8 – СТАНДОТКЛОНП;
  • 9 – СУММ;
  • 10 – ДИСП;
  • 11 – ДИСПР.

Если к описанным номерам прибавить 100 (т.е. вместо 1 указать 101 и т.д.), то они все равно будут указывать на те же функции. Но отличие заключается в том, что во втором варианте, при скрытие строк, те ячейки, указанные в ссылках, которые будут находится в скрытых строках, участвовать в подсчете не будут.

Пример использования:

Используем структуру промежуточных итогов, которую мы применяли в одноименной статье. Добавим к ней средний результат по всем агентам за каждый квартал. Для того, чтобы корректно применить функцию СРЗНАЧ для имеющихся значений, нам пришлось бы указать 3 отдельных диапазона, чтобы не принимать в расчет промежуточные значение. Это не составить проблем, если данных не много, но если таблица большая, то выделять каждый диапазон будет проблематично. В данной ситуации лучше применить функцию ПРОМЕЖУТОЧНЫЕ.ИТОГИ, т.к она проигнорирует все ненужные ячейки

Обратите внимание на изображение. Разница очевидна, что второй пример использовать гораздо удобнее при одинаковых результатах функций

Также можно не беспокоиться о добавлении в будущем других строк с итогами.

Теперь продемонстрируем различия в использовании режимов функций. В качестве примера используем только что созданную формулу и изменим значение первого аргумента на 101 вместо 1. Возвращаемый результат не измениться до тех пор, пока мы не скроем строки структуры.

Информация продаж по Агенту1 во втором случае не учитывается.

  • Вперёд >

Если материалы office-menu.ru Вам помогли, то поддержите, пожалуйста, проект, чтобы я мог развивать его дальше.

Ссылка на основную публикацию