Нахождение высоты пирамиды
Как найти высоту пирамиды? Очень просто! Для нахождения высоты любой треугольной пирамиды можно воспользоваться формулой объема: V = (1/3)Sh, где S — это площадь основания, V — объем пирамиды, h — ее высота. Из этой формулы вывести формулу высоты: для нахождения высоты треугольной пирамиды, нужно умножить объем пирамиды на 3, а потом поделить получившееся значение на площадь основания, это будет: h = (3V)/S. Поскольку основание треугольной пирамиды — это треугольник, можно воспользоваться формулой подсчета площади треугольника. Если нам известны: площадь треугольника S и его сторона z, то по формуле площади S=(1/2)γh: h = (2S)/γ, где h — это высота пирамиды, γ — это ребро треугольника; угол между сторонами треугольника и сами две стороны, то по такой формуле: S = (1/2)γφsinQ, где γ, φ — это стороны треугольника, находим площадь треугольника. Значение синуса угла Q нужно посмотреть в таблице синусов, которая есть в Интернете. Далее подставляем значение площади в формулу высоты: h = (2S)/γ. Если в задании требуется вычислить высоту треугольной пирамиды, то объем пирамиды уже известен.
Формулы объема треугольной пирамиды
Определить объем совершенно любой пирамиды с произвольным n-угольником в основании можно с помощью следующего выражения:
V = 1/3 × So × h
Здесь символ So обозначает площадь основания, h — это высота фигуры, проведенная к отмеченному основанию из вершины пирамиды.
Поскольку площадь произвольного треугольника равна половине произведения длины его стороны a на апофему ha, опущенную на эту сторону, то формула объема треугольной пирамиды может быть записана в следующем виде:
V = 1/6 × a × ha × h
Для треугольной пирамиды общего типа определение высоты является непростой задачей. Для ее решения проще всего воспользоваться формулой расстояния между точкой (вершиной) и плоскостью (треугольным основанием), представленной уравнением общего вида.
Для правильной пирамиды формула объема имеет конкретный вид. Площадь основания (равностороннего треугольника) для нее равна:
So = √3/4 × a2
Подставляем ее в общее выражение для V, получаем:
V = √3/12 × a2 × h
Частным случаем является ситуация, когда у тетраэдра все стороны оказываются одинаковыми равносторонними треугольниками. В этом случае определить его объем можно, только исходя из знания параметра его ребра a. Соответствующее выражение имеет вид:
V = √2/12 × a3
Теория
Это интересно: Как оформлять реферат в школе по ГОСТу + образец титульного листа 2019
Для решения задач понадобится знать теоремы равнобедренного треугольника:
Равнобедренный треугольник
Основные свойства
1В правильную пирамиду можно вписать и описать сферу, так как при пересечении диагоналей, основание делится на равные части. Сферу нельзя вписать в любую фигуру.
2Площадь боковой поверхности – половина произведения периметра основания на апофему. Апофема есть на каждой грани, а не только на одной.
Пирамида
Четырехугольная пирамида
В основании – многоугольник; остальные грани – треугольники, соединяющиеся в общей вершине.
Четырехугольная пирамида
Треугольная пирамида
В качестве основания можно рассматривать любую грань. Вся фигура состоит из треугольников.
Треугольная пирамида
Необходимые знания для нахождения высоты
1Нужно понимать, что из себя представляют треугольники: свойства, формулы, определение. Большинство задач решается через треугольники (боковые грани).
2Понимать, что такое сечение и как оно влияет на геометрическую фигуру.
3Что такое правильные многоугольники: виды, свойства, формулы.
Когда теория закреплена, можно переходить к формулам.
Формулы для нахождения высоты
Формулы
Запомните, что маленькая буква h – это апофема, а большая H – высота.
В некоторых задачах, высоту можно найти через объем:
Объем пирамиды
Нахождение высоты в правильной пирамиде
Нахождение высоты в правильной пирамиде
Ниже будут представлены текстовые решения часто встречающихся задач.
Треугольная пирамида
Треугольная пирамида
Задача 1
В правильной треугольной пирамиде DBAC с вершиной D биссектрисы треугольника BAC пересекаются в точке N. Площадь треугольника BAC равна 4; объем пирамиды равен 12. Найдите длину отрезка DN.
DN – высота, следовательно, объем фигуры можно выразить по формуле:
DN = 3V/S основания = 3*12/4 = 9
Ответ: 9
Задача 2
DBAC – медианы основания BAC. Они пересекаются в точке N. Площадь ΔBAC равна 18, V = 20; найдите высоту.
Пользуясь формулой объема, получается:
DN = 3V/S ΔBAC = 3*36/18 = 108/18 = 6
Ответ: 6
Четырехугольная пирамида
Четырехугольная пирамида
Задача 1
Найдите высоту пирамиды, если ML = 10, а DC = 12. В основании квадрат.
ML – это апофема, сторона нам известна, следовательно, можно применить формулу для нахождения OL:
OL = ½*12 = 6
Известно, что MOL – прямоугольный угол. Применим теорему Пифагора:
MO ² = √ML ² — √OL ² = √100- √36 = √64
MO = 8
Задача 2
Известно, что диагональ AC = 20, ML = 10, а сторона DC = 12; найдите MO правильной четырехугольной пирамиды.
Найдем OL
В основании фигуры – квадрат, стороны и углы которого равны. Значит, половина диагонали = 10. Рассмотрим треугольник LOC, он – прямоугольный. Из исходных данный ясно, что LC = 6 (в равнобедренном треугольнике, высота, проведенная из вершины, делит основание на 2 равные части – это свойство р/б треугольника).
Пользуясь теоремой Пифагора, находим OL:
OL² = √OC² — √LC² = √100 – √36 = √64 = 8
Задача 3
Ищем MO
Пользуясь той же теоремой, находим высоту:
MO² = √ML² – √OL² = 100 – 64 = 36
Ответ: 36
Задача 4
Известно, что в основании ABCD, AB=CD=BC=AD. Треугольник DMC имеет площадь 36см, DC = 4, OL = 6. Определите тип фигуры и найдите высоту.
Исходя из информации про основание, мы сделали вывод, что перед нами правильная пирамида – стороны основания равны. Следовательно, перед нами четырехугольная правильная пирамида.
Из первого вывода следует, что боковые грани – равнобедренные треугольники, а высота и медиана этих треугольников – апофема. Пользуясь формулами, найдем высоту.
Площадь равнобедренного треугольника
36 = ½ * 4 *h
36 = 2h
H = 18
Теперь у нас есть апофема, а OL нам было уже давно. MOL – прямоугольный треугольник, 2 стороны которого, мы уже знаем. Следовательно, мы можем посчитать высоту.
MO = ML – OL = 18 – 6 = 12
Ответ: 12
Правильная усеченная пирамида
Если провести сечение, параллельное основанию пирамиды, то тело, заключённое между этими плоскостями и боковой поверхностью, называется усеченной пирамидой. Это сечение для усеченной пирамиды является одним из её оснований.
Высота боковой грани (которая является равнобокой трапецией), называется — апофема правильной усеченной пирамиды.
Усечённая пирамида называется правильной, если пирамида, из которой она была получена – правильная.
- Расстояние между основаниями усеченной пирамиды называется высотой усеченной пирамиды
- Все грани правильной усеченной пирамиды являются равнобокими (равнобедренными) трапециями
Примечания
См. также: частные случаи (формулы) для правильной пирамиды:
Для правильной треугольной пирамиды
Как воспользоваться приведенными здесь теоретическими материалами для решения своей задачи:
- Ознакомьтесь со справочными материалами
- Выясните, по условию задачи, о какой именно правильной пирамиде идет речь
- После этого в дереве знаний справа, найдите подходящий урок с данной фигурой (см. решение задач про правильную пирамиду с треугольником в основании, с четырехугольником в основании). Если нужного решения не нашлось, попробуйте ознакомиться с содержанием соседних уроков, возможно, решение подобной задачи есть именно там
- Если Вы просмотрели весь раздел, но аналогичной задачи не нашлось, напишите о своей проблеме на форуме «раздел для школьников» в соответствующей теме. Обязательно ознакомьтесь предварительно с правилами форума.
Содержание главы:
Апофема правильной пирамиды
Объем правильной усеченной пирамиды
Правильная пирамида с четырехугольником в основании
Правильная пирамида с четырехугольником в основании
Нахождение боковой поверхности и высоты правильной пирамиды с четырехугольником в основании
Правильная пирамида с четырехугольником в основании (часть 3)
Нахождение углов пирамиды
Нахождение величины наклона боковых граней правильной прамиды
Нахождение расстояний в правильной четырехугольной пирамиде
Пирамида и вписанный конусОписание курса Апофема правильной пирамиды
Призма, формула вычисления объёма призмы
Призма – это многогранник, основаниями которого являются равные многоугольники, а боковыми гранями – параллелограммы.
На рисунке 2 изображена наклонная призма. Многогранники и в основаниях лежат в параллельных плоскостях, равны и расположены так, что боковые рёбра () между собой параллельны.
Рис. 2. Наклонная призма
Формула для вычисления объёма призмы:
, где S – площадь основания ( или ), h – высота между основаниями, которая получается при опускании перпендикуляра из любой точки основания на плоскость, в которой лежит другое основание этой призмы ().
Если мы рассмотрим пирамиду , то её объём будет равен:
, где V – объём призмы
Часто задаваемые вопросы
1Как понять, что пирамида правильная, если в условии это не указано?
Часто в задании не указывают какой тип фигуры, чтобы человек сам догадался и применил нужные формулы. Понять какой тип фигуры легко – начните решение задачи с рассмотрения основания и заучивания свойств фигуры.
Зная определения и свойства, определить тип фигуры очень легко.
2Могут ли быть указаны в задании лишние данные?
Чтобы решать задачи, человек должен включать логику, а не подставлять исходные числа в знакомые формулы. С этим расчетом, в некоторых задачах умышленно добавляют лишние данные, которые могут даже не использоваться при решении. Чаще такое встречается в задачах на ЕГЭ.
3Обязательно ли оформлять высоту большой буквой H? Нужно ли выделять апофему?
Для удобства, человек может не выделять отдельно высоту, а сразу писать, например, BE (если B – вершина, а E – основание). То же с апофемой
Важно, чтобы сам человек осознавал, что это за линия и как ее использовать в решении
4Как можно быстро изучить стереометрию?
Ключ к пониманию стереометрии – умение визуализировать объекты в пространстве. Если в дополнение к этому умению, знать формулы, свойства и теорию – задачи будут решаться быстро и безошибочно.
4Как искать высоту, если известен объем?
Если выразить высоту через формулу объема, то получится следующее:
H = (3*V)/ S;
Пример: объем пирамиды равен 70 куб. см., а площадь боковых граней – 30см²
H = 3*70/30 = 7см
Усеченная пирамида
Если верхнюю часть, содержащую вершину, отсечь у правильной треугольной пирамиды, то получится усеченная фигура. В отличие от исходной она будет состоять из двух равносторонних треугольных оснований и трех равнобедренных трапеций.
Ниже на фото показано, как выглядит правильная усеченная пирамида треугольная, изготовленная из бумаги.
Для определения объема треугольной пирамиды усеченной необходимо знать три ее линейных характеристики: каждую из сторон оснований и высоту фигуры, равную расстоянию между верхним и нижним основаниями. Соответствующая формула для объема записывается так:
V = √3/12 × h × (A2 + a2 + A × a)
Здесь h — высота фигуры, A и a — длины сторон большого (нижнего) и малого (верхнего) равносторонних треугольников соответственно.
Что это — треугольная пирамида?
Каждый слышал о древних египетских пирамидах, тем не менее они являются четырехугольными правильными, а не треугольными. Объясним, как получить треугольную пирамиду.
Возьмем произвольный треугольник и соединим все его вершины с некоторой одной точкой, расположенной вне плоскости этого треугольника. Образованная фигура будет называться треугольной пирамидой. Она показана на рисунке ниже.
Вам будет интересно:Как мыться в русской печи: описание обычая, исторические факты
Как видно, рассматриваемая фигура образована четырьмя треугольниками, которые в общем случае являются разными. Каждый треугольник — это стороны пирамиды или ее грань. Эту пирамиду часто называют тетраэдром, то есть четырехгранной объемной фигурой.
Помимо сторон, пирамида также обладает ребрами (их у нее 6) и вершинами (их 4).
Типичные ошибки на ЕГЭ
Незнание темы Когда человек не знает, где находится апофема и что для нее есть определенные формулы, задачу может и можно решить, но тогда необходимо выполнить в 2 раза большей действий.То же обстоит с теорией – если человек не знает свойства многоугольников, то и решить задание он не сможет. Для того, чтобы понимать геометрию, не нужно обладать особенными способностями. Даже при отсутствии способностей к математике, зная теорию, вы будете понимать геометрию.
Отсутствие проверки Хотите потерять балл на ЕГЭ? – не перепроверяйте решения. Часто, задания решаются хаотично и на листе бумаге разные решения намешаны в кучу. Когда приходит время написать ответ, человек по невнимательности либо забывает выполнить последнее действие, либо вписывает не тот ответ.Решайте задачи по действиям, проставляйте пункты и делайте проверку ответа, каким бы он ни был.
Задачи под копирку Решая сотни аналогичных задач, человек настолько привыкает, что теряет бдительность, игнорируя многие исходные данные. Придя на экзамен, в задании может быть вопрос с подвохом и человек ошибается в теме, которую он знал идеально. Помните, к каждой задаче нужен индивидуальный подход, как бы хорошо вы в ней не разбирались.
Запись Структурируйте решения, прописывая каждое действие и каждый полученный вывод. Это необходимо для того, чтобы не запутаться. Решая задания хаотично, можно легко записать неправильное число, не тот ответ, подставить не те числа, и задача уже решена неверно. Обидно получать низкий балл из-за невнимательности.
Подсчеты в уме На экзамене все нервничают и переживают, а потому зарабатывают баллы ниже, чем планировалось изначально. Когда человек нервничает, уровень концентрации и внимания резко снижается
Он может упустить что-то важное, не поставить запятую или запутаться в ходе размышлений.Считая примеры в столбик, вы обезопасите себя от глупых ошибок.
Незнание структуры экзамена Очень обидные ошибки допускают люди, пересдающие ЕГЭ через несколько лет, либо обучающиеся в экстернате. Как правило, они плохо знакомы с процедурой заполнения бланков и внесения ответов.Заполнение бланков для части А и С – различно
Внимательно посмотрите, как необходимо их заполнять, так как неправильное внесение ответа (например, запятая и число в одной клетке) будет приравниваться к ошибке и ответ будет не засчитан.Также, если вы самостоятельно готовитесь к экзамену, учитесь рассчитывать время на каждое задание.
Поспешные решения В случае, если ответ был записан с ошибкой, его можно внести в графе ниже, заменив неправильный ответ на правильный. Однако, клетки для внесения результатов ограничены в количестве, а заданий в общей сложности 19!Несколько раз перепроверьте ответы, прежде чем внести их в бланк ответов.
Незнание степеней числа В теореме Пифагора будут использованы не только маленькие числа (до 10). В профильной математике, могут быть крупные числа, которые тяжело посчитать в столбик.Также, степени числа могут понадобиться для других заданий. Выучите значение чисел в квадрате и кубе от 1 до 20. Помните, что на профильном экзамене, пользовать методической таблицей нельзя!
Усеченная правильная пирамида
Усеченная правильная пирамида
Любая усеченная пирамида является многогранником, образованным пирамидой и её сечением, параллельным основанию.
Теорема о боковой поверхности правильной усеченной пирамиды
Площадь боковой поверхности правильной усечённой пирамиды равна произведению полу суммы периметров на апофему.
Площадь одной боковой грани усеченной пирамиды есть площадь трапеции (рис. 5)
Рис. 5
А площадь всей боковой поверхности
Выводы:
Мы рассмотрели правильную пирамиду и стандартные задачи на нее, включая двугранные углы. А также усеченную правильную пирамиду.
Список литературы
- И. М. Смирнова, В. А. Смирнов. Геометрия. 10-11 класс: учебник для учащихся общеобразовательных учреждений (базовый и профильный уровни) / И. М. Смирнова, В. А. Смирнов. – 5-е изд., испр. и доп. – М.: Мнемозина, 2008. – 288 с.: ил.
- Шарыгин И. Ф. Геометрия. 10-11 класс: Учебник для общеобразовательных учебных заведений / Шарыгин И. Ф. – М.: Дрофа, 1999. – 208 с.: ил.
- Е. В. Потоскуев, Л. И. Звалич. Геометрия. 10 класс: Учебник для общеобразовательных учреждений с углубленным и профильным изучением математики /Е. В. Потоскуев, Л. И. Звалич. – 6-е изд., стереотип. – М.: Дрофа, 2008. – 233 с.: ил.
Домашнее задание
- Какое наименьшее число ребер может иметь пирамида?
- Сколько ребер у n-угольной усеченной пирамиды?
- На Рис. 4 мы провели перпендикуляр СР к ребру SC и соединили точку В и Р. Докажите, что ВР⊥SC.
- В правильной четырехугольной пирамиде SABCD (точка O – центр основания, S – вершина) боковое ребро SB=13, а диагональ основания AC =24. Найдите длину отрезка SO.
- В правильной треугольной пирамиде SABC точка L – середина ребра AC, S – вершина. Известно, что BC = 6, а SL = 5. Найдите площадь боковой поверхности пирамиды.
Дополнительные рекомендованные ссылки на ресурсы сети Интернет
- Я Класс (Источник).
- Фестиваль педагогических идей «Открытый урок» (Источник).
- Интернет-портал Slideshare.net (Источник).
Полезные советы
- Если в задаче указан объем – ищите высоту через него.
- Делите равнобедренные треугольники на прямоугольные – так быстрее и проще решить задачу.
- Учите квадратные корни чисел – так, вы будете быстрее справляться с теоремой Пифагора.
- Не кидайтесь сразу к решению – изучите исходные данные и сделайте правильные выводы.
- Если в заданиях получаются слишком крупные числа (от 1000), то перепроверьте решение – вероятно, вы допустили ошибку. В заданиях в учебнике и на экзамене практически не используются крупные числа.
6.5 Общий Балл
Найти высоту в пирамиде
Достоверность информации
8.5
Актуальность информации
7.5
Раскрытие темы
8.5
Доступность применения
7
Удобство
8
Плюсы
Благодаря доступной информации можно легко научиться решать задачи по геометрии
Минусы
Необходимы знания математики
|
Элементы правильной пирамиды
- Высота боковой грани, проведенная из ее вершины называется апофема. На рисунке обозначена как отрезок ON
- Точка, соединяющая боковые рёбра и не лежащая в плоскости основания, называется вершиной пирамиды (О)
- Треугольники, имеющие общую сторону с основанием и одну из вершин, совпадающую с вершиной, называются боковыми гранями (AOD, DOC, COB, AOB)
- Отрезок перпендикуляра, проведённого через вершину пирамиды к плоскости её основания называется высотой пирамиды (ОК)
- Диагональное сечение пирамиды — это сечение, проходящее через вершину и диагональ основания (AOC, BOD)
- Многоугольник, которому не принадлежит вершина пирамиды, называется основанием пирамиды (ABCD)
Если в основании правильной пирамиды лежит треугольник, четырехугольник и т.д. то она называется правильной треугольной, четырехугольной и т.д.
Треугольная пирамида есть четырехгранник — тетраэдр.
Подведение итогов урока
На данном уроке мы повторили формулы расчёта объёмов призмы и пирамиды. Решили задачи с использованием этих формул.
Список литературы
- Геометрия: учеб. для 10–11 кл. для общеобразовательных учреждений: базовый и профильный уровни /Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др. – М.: «Просвещение», 2008.
- Задачи по геометрии. Пособие для учащихся 7–11 кл. общеобразовательных учреждений /Б. Г. Зив, В. М. Мейлер. – М.: «Просвещение», 2003–2008.
- Геометрия. Задачи и упражнения на готовых чертежах. 10–11 кл. /Е. М. Рабинович – Харьков: «Гимназия», 2003, М.: «Илекса», 2003.
- Геометрия. 10 кл. Самостоятельные и контрольные работы. /А. И. Ершова, В. В. Голобородько – М.: «Илекса», 2008.
- Математика. ЕГЭ – 2011. Тематические тренировочные задания./В. В. Кочагин, М. Н. Кочагина – М.: «Эксмо», 2011.
- Математика. ЕГЭ – 2009 /Ф. Ф. Лысенко. – Ростов-на-Дону: «Легион», 2008.
Дополнительные рекомендованные ссылки на ресурсы сети Интернет
- Clck.ru (Источник).
- Clck.ru (Источник).
- Clck.ru (Источник).
Домашнее задание
- От треугольной призмы, объем которой равен 129, отсечена треугольная пирамида плоскостью, проходящей через сторону одного основания и противоположную вершину другого основания. Найдите объем оставшейся части.
- Основанием пирамиды служит прямоугольник, одна боковая грань перпендикулярна плоскости основания, а три другие боковые грани наклонены к плоскости основания под углом 60°. Высота пирамиды равна 12. Найдите объем пирамиды.
- В прямом параллелепипеде диагонали и взаимно перпендикулярны и равны 6 см и 8 см, АВ = 3 см. Найдите объем параллелепипеда.