Объемы фигур. объем шара

Введение

Сколько чугуна нужно, чтобы отлить пушечное ядро? Что занимает больше места: арбузная корка или мякоть арбуза? Сколько воздуха поместится внутри воздушного шара? Чтобы ответить на все эти и многие другие вопросы, необходимо уметь находить объем шара. Сделать это не так просто. Разбить его на «кубики», треугольные призмы или другие фигуры, как это делалось раньше, не получится. Можно вычислить объем шара с помощью определенного интеграла. Но как же тогда вычисляли объем, например, древние греки – при отсутствии определенных интегралов? Метод, придуманный Архимедом, был очень красив и по сути своей являлся предшественником метода доказательства через интеграл. Он доказал формулу объема шара понятийно, представив половину шара через конус и цилиндр, объемы которых уже известны.

Применение формулы

Рассмотрим на примере, как вычислить площадь круглого шара, диаметр которого равен 50 см. Следуя формуле, нужно 50 разделить на два (чтобы получить радиус), возвести полученное число в квадрат и умножить всё это дело сначала на 4, затем на 3,14. В итоге получим число в 7 850 квадратных сантиметров.

Формула вычисления площади применяется не только среди учителей в школе и научных сотрудников в лаборатории. Данная формула может пригодиться обычному маляру. Ведь если шар большой, а краски мало, то возникает вопрос – хватит ли ему этой смеси, чтобы покрасить весь объект. И это далеко не единственный бытовой случай, где может пригодиться формула.

Формула вычисления объёма может пригодиться и строительной бригаде, что делает ремонт

И неважно, какой это объект – промышленное здание, небольшой дом или обычная квартира. Этим и отличаются профессионалы – они умеют применять свои знания на практике

Но как быть, если не представляется возможным измерить объект? Такой вопрос может возникнуть в случае огромных размеров объекта или его недосягаемости. В этом случае могут помочь электронные технологии, в основе работы которых лежит сканирование пространства определёнными частотами и лазерами. С современными технологиями необязательно знать все формулы наизусть. Достаточно иметь подключение к интернету и зайти на любой онлайн-калькулятор.

Что такое шар?

В стереометрии есть большой раздел, который называется фигуры вращения. Об этом редко говорят в школе, но плоские фигуры можно вращать вокруг какой-либо оси или точки. Так получаются объемные фигуры.

Стереометрия это наука о фигурах в пространстве. Простейшими единицами стереометрии является точка, прямая и плоскость.

Например, цилиндр образован вращением прямоугольника или квадрата. Поэтому, если рассечь цилиндр плоскостью, то сечение примет форму того самого квадрата или прямоугольника, который вращали, чтобы получить фигуру.

Так же и шар образован вращением. Как не трудно догадаться, основной для шара послужил круг. Причем сразу стоит сказать, что именно круг, а не окружность.

Следует понимать, что круг и окружность разные фигуры. Так окружность представляет собой набор точек равноудаленных от центра. Переводя на более простой язык окружность – это сама линия и центр окружности. А круг включает в себя и все внутреннее пространство. У окружности не может быть площади.

То есть, шар имеет какое-то внутренне заполненное пространство. Интересно, что сфера так же имеет пространство внутри, только условно полое.

Шаровый сектор

Определение. Тело, получаемое от вращения (черт. 146) кругового сектора (COD) вокруг диаметра (АВ), не пересекающего ограничивающую его дугу, называется шаровым сектором. Это тело ограничено боковыми поверхностями двух конусов и поверхностью шарового пояса; последняя называется основанием шарового сектора. Один из радиусов кругового сектора может совпадать с осью вращения; например, сектор АОС, вращаясь вокруг АО, производит шаровой сектор ОСАС1, ограниченный боковой поверхностью конуса и сегментной поверхностью. Для нахождения объёма шарового сектора и целого шара мы предварительно докажем следующую лемму.

Лемма. Если \(\Delta\)ABC (черт. 147) вращается вокруг оси ху, которая лежит в плоскости треугольника, проходит через его вершину А, но не пересекает стороны ВС, то объём тела, получаемого при этом вращении, равен произведению поверхности, образуемой противоположной стороной ВС, на одну треть высоты h, опущенной на эту cторону.

При доказательстве рассмотрим три случая:

1) Ось совпадает со стороной АВ (черт. 148).

В этом случае искомый объём равен сумме объёмов двух конусов, получаемых вращением прямоугольных треугольников BCD и DCA. Первый объём равен 1/3 π CD2 • DB, а второй 1/3 π CD2 • DA; поэтому объём, образованный вращением ABC, равен 1/3 π CD2 (DB+DA) = 1/3 π CD • CD • BA

Произведение CD • BA равно ВС • h, так как каждое из этих произведений выражает двойную площадь /\ ABC ; поэтому

объём ABC = 1/3 π CD • BC• h.

Но произведение π CD • BC равно боковой поверхности конуса BDC; значит,

объём ABC = (поверхность BC)• 1/3 h.

2) Ось не совпадает с АВ и не параллельна ВС (черт. 149).

В этом случае искомый объём равен разности объёмов тел, производимых вращением треугольников АМС и АМВ. По доказанному в первом случае

объём AMС = 1/3 h • (поверхность МС), объём AMB = 1/3 h • (поверхность MB);

следовательно,

объём ABC = 1/3 h • (поверхность МС-поверхность МВ) = 1/3 h • (поверхность ВС).

3) Ось параллельна стороне ВС (черт. 150).

Тогда искомый объём равен объёму, производимому вращением DEBC, без суммы объёмов, производимых вращением треугольников АЕВ и ACD; первый из них равен π DC2 • ED; второй 1/3 π EB2 • EA и третий 1/3 π DC2 • AD.

Приняв теперь во внимание, что ЕВ = DC, получим:

объём АВС = π DC2 [ED — 1/3(ЕА + AD)] = π DC2( ED -1/3ED ) = 2/3 • π DC2• ED.

Произведение 2π DC• ED выражает боковую поверхность цилиндра, образуемую стороной ВС; поэтому

объём АBС = (поверхность BC)• 1/3DC = (поверхность BC) • 1/3h.

Объем шарового сектора

Определение. За величину объёма шарового сектора, получаемого вращением вокруг диаметра (ЕF, черт. 151) кругового сектора (AOD), принимается предел, к которому стремится объём тела, образуемого вращением многоугольного сектора, который ограничен крайними радиусами (ОА и OD) и правильной ломаной линией (ABCD), вписанной в дугу кругового сектора, когда число сторон её неограниченно увеличивается.

Теорема. Объём шарового сектора равен произведению поверхности соответствующего шарового пояса (или соответствующей сегментной поверхности) на треть радиуса.

Пусть шаровой сектор производится вращением вокруг диаметра ЕF (черт. 151) сектора AOD.

Определим его объём V. Для этого впишем в дугу AD правильную ломаную линию ABCD с произвольным числом сторон. Многоугольный сектор OABCD образует при вращении некоторое тело, объём которого обозначим буквой V1. Объём этот есть сумма объёмов тел, получаемых вращением треугольников ОАВ, ОВС, OCD вокруг оси ЕF.

Применим к этим объёмам лемму, доказанную ранее, причём заметим, что высоты треугольников равны апофеме а вписанной ломаной. Согласно этой лемме будем иметь:

V1= (поверхность АВ) • a3+ (поверхность ВС) • a3 + … = (поверхность ABCD) • a3 .

Вообразим теперь, что число сторон ломаной линии неограниченно увеличивается. При этом условии поверхность ABCD стремится к пределу, именно к поверхности шарового пояса AD, а апофема а имеет пределом радиус R; следовательно,

V = пределу V1 = (поверхность пояса AD) • R3.

Замечание. Теорема и её доказательство не зависят от того, будет ли один из радиусов кругового сектора совпадать с осью вращения или нет.

Рождение формулы

Принято считать, что первый, кто нашёл и вывел формулу объёма и площади шара, был Архимед. Это величайший древнегреческий учёный, живший за 300 лет до нашей эры. Он был не только математиком, но и физиком, и инженером. Он один из первых людей, кто попытался «оцифровать» окружающий нас мир. Его теоремы и труды используются по сей день.

Именно Архимед определил границы числа «пи» и обозначил их, не имея никаких современных гаджетов. Сам Архимед очень гордился найденной формулой, с помощью которой вычисляется объём шара. Его потомки в честь этого изобразили на его могильном камне цилиндр и шар.

Если бы каким-то чудом он переродился в наше время, то он сразу же смог бы преобразить этот мир и вывести его на новый уровень.

Занимательные факты

Это интересно:

  1. У числа «пи» есть собственные фан-клубы по всему миру. Члены общества пытаются запомнить как можно больше знаков из этого числа, а также пытаются разгадать вселенские тайны, сокрытые в числе.
  2. Площадь суши Земли составляет всего 29,2 % от её общей поверхности. Точное число площади сложно назвать из-за неравномерного рельефа Земли, такие как впадины и горы.
  3. Знания о формуле площади шара можно применять и в быту. Также этими знаниями можно подавлять соперника в споре.

Продемонстрировав объём своих знаний в области геометрии, можно изначально заставить вас уважать, а ремонтникам и продавцам можно дать понять, что вас просто так не обмануть.

Трактовка значений

Это следует знать:

  • Шар – геометрический объект, получившийся в результате вращательных полукруговых движений вокруг центра. Любая точка поверхности шара находится на одинаковом расстоянии от центра.
  • Сфера – не то же самое, что шар. Если тот является объёмным объектом и включает в себя внутреннее пространство, то сфера – это лишь поверхность данного объекта и имеет только свою площадь. Иными словами – нельзя сказать, что сфера имеет такой-то объём, в отличие от шара.
  • Число «пи» — это постоянное число, равное отношению длины окружности к её диаметру. В сокращённом виде его принято обозначать числом, равным 3,14. Но на самом деле, после тройки идёт больше тысячи цифр!
  • Радиус шара равен ½ его диаметру. Точный диаметр можно вычислить с использованием нескольких плоских и ровных предметов. Нужно лишь зажать шар между этими предметами, которые зажимают шар и расположены перпендикулярно друг к другу, а затем измерить получившийся диаметр.
  • Квадратная степень обозначается в виде двойки и означает то, что это число надо умножить на само себя один раз. Если бы степень числа была в виде тройки, то умножать на само себя нужно было бы два раза. Записав выражение на бумаге, можно понять, почему используются именно двойка и тройка, а не единица и двойка.
  • Объём – величина, обозначающая размер в пространстве, занимающее объектом. От диаметра зависит объём шара. Формула будет равна четырём трети, умноженным на число «пи» и вновь умноженным на его радиус в кубе.
  • Площадь – величина, обозначающая размер поверхности объекта, но не внутреннего пространства.

Заключение

Сегодня мы решили ряд задач, которые используют формулы объема шара и объем сегмента, увидели, как эти формулы работают на практике, и выяснили связь между объемом и массой.

Список литературы

1. Геометрия. Учебник для 10-11 классов. Атанасян Л.С. и др. 18-е изд. – М.: Просвещение, 2009. – 255 с.

2. А.В. Погорелов. Геометрия 11 класс. – М.: Просвещение, 2002. В.Ф. Бутузов, Ю.А. Глазков. Рабочая тетрадь по геометрии 11 класс.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

1. Интернет-сайт fxyz.ru (Источник)

2. Интернет-сайт math24.ru (Источник)

3. Интернет-сайт «Математика? Легко!» (Источник)

Домашнее задание

1. Шар радиуса  пересечен плоскостью на расстоянии  от центра. Найдите площадь сечения.

2. Металлический шар радиуса  переплавили в конус, высота которого – . Найдите отношение площади боковой поверхности конуса к площади его основания.

3. Радиусы трех шаров равны , и . Найдите радиус шара, объем которого равен сумме объемов данных шаров.

Ссылка на основную публикацию