Как найти обратную матрицу в excel

Решение матриц в Excel

С матрицами в Excel выполняются такие операции, как: транспонирование, сложение, умножение на число / матрицу; нахождение обратной матрицы и ее определителя.

Транспонирование

Транспонировать матрицу – поменять строки и столбцы местами.

Сначала отметим пустой диапазон, куда будем транспонировать матрицу. В исходной матрице 4 строки – в диапазоне для транспонирования должно быть 4 столбца. 5 колонок – это пять строк в пустой области.

  • 1 способ. Выделить исходную матрицу. Нажать «копировать». Выделить пустой диапазон. «Развернуть» клавишу «Вставить». Открыть меню «Специальной вставки». Отметить операцию «Транспонировать». Закрыть диалоговое окно нажатием кнопки ОК.
  • 2 способ. Выделить ячейку в левом верхнем углу пустого диапазона. Вызвать «Мастер функций». Функция ТРАНСП. Аргумент – диапазон с исходной матрицей.

Нажимаем ОК. Пока функция выдает ошибку. Выделяем весь диапазон, куда нужно транспонировать матрицу. Нажимаем кнопку F2 (переходим в режим редактирования формулы). Нажимаем сочетание клавиш Ctrl + Shift + Enter.

Преимущество второго способа: при внесении изменений в исходную матрицу автоматически меняется транспонированная матрица.

Сложение

Складывать можно матрицы с одинаковым количеством элементов. Число строк и столбцов первого диапазона должно равняться числу строк и столбцов второго диапазона.

В первой ячейке результирующей матрицы нужно ввести формулу вида: = первый элемент первой матрицы + первый элемент второй: (=B2+H2). Нажать Enter и растянуть формулу на весь диапазон.

Умножение матриц в Excel

Условие задачи:

Чтобы умножить матрицу на число, нужно каждый ее элемент умножить на это число. Формула в Excel: =A1*$E$3 (ссылка на ячейку с числом должна быть абсолютной).

Умножим матрицу на матрицу разных диапазонов. Найти произведение матриц можно только в том случае, если число столбцов первой матрицы равняется числу строк второй.

В результирующей матрице количество строк равняется числу строк первой матрицы, а количество колонок – числу столбцов второй.

Для удобства выделяем диапазон, куда будут помещены результаты умножения. Делаем активной первую ячейку результирующего поля. Вводим формулу: =МУМНОЖ(A9:C13;E9:H11). Вводим как формулу массива.

Обратная матрица в Excel

Ее имеет смысл находить, если мы имеем дело с квадратной матрицей (количество строк и столбцов одинаковое).

Размерность обратной матрицы соответствует размеру исходной. Функция Excel – МОБР.

Выделяем первую ячейку пока пустого диапазона для обратной матрицы. Вводим формулу «=МОБР(A1:D4)» как функцию массива. Единственный аргумент – диапазон с исходной матрицей. Мы получили обратную матрицу в Excel:

3.6. Установка надстроек

Прежде чем  начать использовать надстройку, нужно
выполнить процедуру ее установки, которая состоит из двух частей.

В первой фазе файлы, входящие в пакет надстройки
размещают на компьютере. В некоторых пакетах имеется программа
Setup.exe, которая выполняет это автоматически. В других файлы нужно
размещать самостоятельно. Объясним, как это нужно сделать. В состав
пакета обязательно входит файл с расширением XLA и несколько
вспомогательных файлов с расширениями DLL, HLP и др. Все вспомогательные
файлы должны  размещаться в следующих директориях:
C:\Windows, или  C:\Windows\System или
C:\Windows\System32. Основной файл (с расширением XLA) может, в
принципе, находится в любом месте, но две директории являются
предпочтительными.

Microsoft рекомендует размещать файлы XLA в директории
C:\Documents and Settings\User\Application
Data\Microsoft\AddIns, где User – это
имя, под которым происходит вход в систему. Тогда этот файл можно быстро
загрузить на второй фазе установки. Однако, если рабочие книги
используются на нескольких компьютерах, с разными именами
User, то, при смене компьютера, связи с
основным файлом надстройки теряются и их приходится

обновлять.

Поэтому мы предлагаем поместить файл
Chemometrics.xla в директорию, которая имеет одно и то же имя на
разных компьютерах, например C:\Program
Files\Chemometrics. Автоматическая установка надстройки
Chemometrics Add-In
описана здесь.

Вторая фаза проводится из открытой книги Excel. В версии
2003 нужно выполнить последовательность команд
Tools-Add-Ins, а в версии 2007 последовательность:
Office Button-Excel Options-Add-Ins-Go. В
появившемся окне (см Рис. 45) нужно нажать Browse
и найти в компьютере нужный файл XLA.  

 


Рис.45 Установка надстройки

После того, как надстройка установлена, ее можно
активировать и деактивировать устанавливая отметку напротив имени. Для
удаления надстройки нужно снять галочку против ее имени в окне
Add-Ins, закрыть Excel и удалить все ранее
установленные файлы с компьютера.  

Заключение

Мы рассмотрели основные приемы работы с матрицами в
системе Excel

За рамками пособия осталось еще много всего важного. Частично заполнить эти пробелы поможет пособие Проекционные методы в
системе Excel

1.3. Адресация

A1C5Name BoxA1F=адрес=A1

Например, первая ячейка имеет абсолютный адрес –  $A$1, относительный адрес –
A1, и два
смешанных адреса – $A1 и
A$1. Различие в способе адресации проявляется,
прежде всего, тогда, когда формула копируется и переносится в другое
место. Поясним это на простом примере.


Рис. 5 Абсолютная и относительная адресация

На верхней панели показан фрагмент листа с
данными, выделенными желтым цветом. В зеленых областях (столбец
F и строка 6)
приведены различные варианты адресации одной и той же ячейки –
A1 (выделена оранжевым). Тип адресации
указан рядом с соответствующей ячейкой. Скопируем каждую из зеленых
областей (по очереди) и вставим рядом – в соседних столбцах:
G и H, и в
соседних строках: 7 и
8 (средняя панель ). Видно, что
результат зависит от типа адресации. Для абсолютной адресации ссылка на
первую ячейку сохранилась. Для относительной – ссылка сдвигается вправо
или вниз, сохраняя относительное положение двух ячеек: той, где стоит
ссылка, и той, на которую ссылаются. Для смешанной адресации результат
зависит от того, куда переносится копия, и от того, какая часть адреса
фиксируется значком доллара $. На правой
панели показаны соответствующие формулы, получающиеся после копирования.
Заметим, что ссылки на ячейки могут изменяться в зависимости от способа
адресации, но при перемещении ячейки с формулой содержащиеся в формуле
ссылки не изменяются.

Для адресации ячейки, которая находится на другом листе той же книги,
надо указывать еще и имя листа, например: Data!B2.
Восклицательный знак (!) отделяет имя листа
от адреса ячейки. Если имя листа содержит пробел, тогда имя надо
заключить в одинарные кавычки, например ‘Raw
Spectra’!C6. При адресации к другой книге, ее имя указывается
впереди, в квадратных скобках, например;
Results!P24

Подробнее о способах адресации можно прочитать

здесь.

Видеоурок

Кратко об авторе:

Шамарина Татьяна Николаевна — учитель физики, информатики и ИКТ, МКОУ «СОШ», с. Саволенка Юхновского района Калужской области. Автор и преподаватель дистанционных курсов по основам компьютерной грамотности, офисным программам. Автор статей, видеоуроков и разработок.

Спасибо за Вашу оценку. Если хотите, чтобы Ваше имя стало известно автору, войдите на сайт как пользователь и нажмите Спасибо еще раз. Ваше имя появится на этой стрнице.

Есть мнение?Оставьте комментарий

Вы можете разместить на своём сайте анонс статьи со ссылкой на её полный текст

В программе Excel с матрицей можно работать как с диапазоном. То есть совокупностью смежных ячеек, занимающих прямоугольную область.

Адрес матрицы – левая верхняя и правая нижняя ячейка диапазона, указанные черед двоеточие.

2.7. Регрессия

Для построения используются
несколько стандартных функций листа.

TREND / ТЕНДЕНЦИЯ

Строит

y=b+m1x1+…+mJ xJ+e

Аппроксимирует известные значения вектора откликов
known_y’s для заданных значений матрицы предикторов
known_x’s и возвращает значения y,
для заданного массива new_x’s.  


Синтаксис 

TREND(known_y’s
)

Примечания 

  • Вектор
    known_y’s должен занимать один столбец,
    тогда каждый столбец матрицы массива known_x’s
    интерпретируется как отдельная переменная;

  • Если
    аргумент known_x’sопущен, то предполагается, что это вектор чисел {1;2;3;…}
    такого же размера, как и known_y’s;

  • Матрица
    новых значений new_x’sдолжна иметь столько же столбцов
    (переменных), как и матрица known_x’s;

  • Если
    аргумент new_x’sопущен, то предполагается, что он совпадает с
    массивом known_x’s.
    Результат является вектором, в котором число строк равно
    числу строк в массиве new_x’s.

Пример 
 


Рис.34 Функция
TREND

Функция TRENDявляется функцией
массива и ее ввод должен завершаться нажатием комбинации
CTRL+SHIFT+ENTER. 

LINEST /
ЛИНЕЙН

Дополняет функцию TREND и выводит некоторые
статистические значения, связанные с регрессией  

y=b+m1x1+…+mJ xJ+e


Синтаксис 

LINEST(known_y’s
)

 

Рис. 35 Таблица вывода функция LINEST

mJ, …,
m2, m1
и b – оценки регрессионных
коэффициентов;

sJ, …,
s2, s1
и sb
– стандартные ошибки для оценок регрессионных коэффициентов;

R2 –
коэффициент детерминации;

sy
стандартная ошибка оценки y;

F – F-статистика;

DoF – число степеней
свободы;

SSreg
регрессионная сумма квадратов;

SSres
остаточная сумма квадратов.

Примечания 

  • LINEST – это
    очень плохо сконструированная функция, очень неудобная в
    практическом применении;

  • Примечания,
    представленные в описании функции полностью применимы к
    функции LINEST.

Пример 
 


Рис.36 Функция
LINEST

Функция LINEST является функцией массива и ее ввод должен
завершаться нажатием комбинации CTRL+SHIFT+ENTER. 

Как найти валовый показатель по матрице взаимосвязей?

Пример 2. Связь между тремя отраслями представлена матрицей прямых затрат А. Спрос (конечный продукт) задан вектором X. Найти валовой выпуск продукции отраслей Х. Описать используемые формулы, представить распечатку со значениями и с формулами.

Исходные данные приведены на рисунке 2:

Рисунок 2 – Исходные данные.

Данная задача связана с определением объема производства каждой из N отраслей, чтобы удовлетворить все потребности в продукции данной отрасли. При этом каждая отрасль выступает и как производитель некоторой продукции и как потребитель своей и произведенной другими отраслями продукции. Задача межотраслевого баланса – отыскание такого вектора валового выпуска X, который при известной матрице прямых затрат обеспечивает заданный вектор конечного продукта Y.

Матричное решение данной задачи:

X = ( E — A )-1 Y

где Е – единична матрица.

Для решения задачи в примере используем следующие 4 функции для работы с матрицами в Excel:

  1. МОБР – нахождение обратной матрицы.
  2. МУМНОЖ – умножение матриц.
  3. МОПРЕД – нахождение определителя матрицы.
  4. МЕДИН – нахождение единичной матрицы.

Результаты приведены на рисунке 3:

Рисунок 3 – Результат вычислений.

как найти обратную матрицу в excel .

Как найти обратную матрицу в Excel

Нажми для просмотра

Другие
видео с
матрицами:
1.Как
умножать
матрицы в
Excel 2.
 
 
 
Тэги:
 
Excel метод обратной матрицы

Нажми для просмотра

Решение
системы
линейных
уравнений
методом
обратной
матрицы.
 
 
 
Тэги:
 
Видеоурок: «Действия с матрицами в Excel»

Нажми для просмотра

Работая с
матрицами
в Excel, нам
приходится
выполнять
операции
транспонир
ования,
сложения,
умножения..
.
 
 
 
Тэги:
 
СЛУ метод обратной матрицы

Нажми для просмотра

.
 
 
 
Тэги:
 
Действия с матрицами

Нажми для просмотра

Матричные
функции
МОБР,
МУМНОЖ,
ТРАНСП,
МОПРЕД
позволяют
легко
находить
обратную
матрицу,
умножать ..
.
 
 
 
Тэги:
 
Как найти определитель матрицы в EXCEL

Нажми для просмотра

Другие
видео с
матрицами:
1.Как
умножать
матрицы в
Excel 2.
 
 
 
Тэги:
 
2015-01-27. Обратная матрица 2х2

Нажми для просмотра

Метод
Жордана-Га
сса для
обращения
матрицы: .
 
 
 
Тэги:
 
Операции над матрицами в Excel
2015-01-28. Обратная матрица 3×3

Нажми для просмотра

Обращение
через
алгебраиче
ские
дополнения
. Обращение
методом
Жордана-Га
сса:  …
 
 
 
Тэги:
 
Урок 10. Работа с матрицами в Excel

Нажми для просмотра

Урок 10.
Работа с
матрицами
в Excel —
МОПРЕД,
МОБР,
ТРАНСП,
МУМНОЖ.
 
 
 
Тэги:
 
Как транспонировать матрицу в Excel

Нажми для просмотра

Другие
видео с
матрицами:
1.Как
умножать
матрицы в
Excel
2.Сложение 
 
 
 
Тэги:
 
Как вычислить обратною матрицу в Excel

Нажми для просмотра

Показано
применение
метода
Гаусса для
решения
конкретной
системы
линейных
алгебраиче
ских
уравнений.
Хоти…
 
 
 
Тэги:
 
Решение систем линейных уравнений, урок 4/5. Метод Гаусса

Нажми для просмотра

Многие
даже не
слышали о
таком
инструмент
е анализа
данных Excel,
как Подбор
параметра.
С помощью
Подбора…
 
 
 
Тэги:
 
Видеоурок: «Как найти корни уравнения в Excel»

Нажми для просмотра

.
 
 
 
Тэги:
 
СЛУ Метод Гаусса в Excel

Нажми для просмотра

Это один из
самых
простых
способов
решения
систем
уравнений.
Я его
очень-очен
КУ. Чего и
вам
советую.
Решает…
 
 
 
Тэги:
 
Метод Крамера за 3 минуты. Решение системы линейных уравнений — bezbotvy

Нажми для просмотра

Показано
применение
метода
Крамера
(метода
определите
лей) для
решения
системы
линейных
алгебраиче
ских…
 
 
 
Тэги:
 
Решение систем линейных уравнений, урок 2/5. Метод Крамера (метод определителей)

Нажми для просмотра

Решение
систем
линейных
уравнений
методом
Крамера в
Excel .
 
 
 
Тэги:
 
2. Решение систем методом Крамера

Нажми для просмотра

Два
способа
нахождения
обратной
матрицы
Поддержать
Проект:
Мои
занятия
в …
 
 
 
Тэги:
 
Обратная матрица (2 способа нахождения)

Нажми для просмотра

метод
Крамера, MS
Excel,
система из
трех
уравнений
с тремя
неизвестны
ми.
 
 
 
Тэги:
 
Решение системы линейных уравнений методом Крамера в MS Excel

Нажми для просмотра

умножение
матриц в
экселе.
 
 
 
Тэги:
 
как … перемножить две матрицы в Excel

Нажми для просмотра

По
просьбам
учащихся
продолжаю
рассказыва
ть про
матрицы. И
сегодня
расскажу о
том, как
находить
определ…
 
 
 
Тэги:
 
Как найти определитель матрицы 2х2, 3х3 и 4х4

Нажми для просмотра

Показано
применение
матричного
метода для
решения
конкретной
системы
линейных
алгебраиче
ских
уравнений..
..
 
 
 
Тэги:
 
Решение систем линейных уравнений, урок 3/5. Матричный метод

Нажми для просмотра

Пример
нахождения
обратной
матрицы к
матрице
второго
порядка.
 
 
 
Тэги:
 
Найти обратную матрицу к матрице второго порядка

Нажми для просмотра

Если
обратную
матрицу
умножить
на простую
матрицу, вы
получите
единичную
матрицу E.
Вы все
поняли
про…
 
 
 
Тэги:
 
Как находить обратную матрицу — bezbotvy

Нажми для просмотра

Поддержи
меня:
Сбербанк
+79081662278
Репетитор
по
информатик
е Нижний
Новгород
+79081662278
Видео
Решение …
 
 
 
Тэги:
 
1 Решение системы линейных уравнений СЛАУ через обратную матрицу в Mathcad Определитель матрицы

Нажми для просмотра

В этом
уроке
описываютс
я способы
задания
матриц в
mathcad(с
помощью
ранжирован
ной
переменной
, задание…
 
 
 
Тэги:
 
Матрицы в Mathcad(создание и редактирование матриц)(Урок 3.1)

Нажми для просмотра

Другие
видео с
матрицами:
1.Как
транспонир
овать
матрицу в
Excel 2.
 
 
 
Тэги:
 
работа в ексель матрица» rel=»spf-prefetch

Нажми для просмотра

Описание отсутсвует
 
 
 
Тэги:
 
Як обчислити визначник матриці в Excel» rel=»spf-prefetch

Нажми для просмотра

Описание отсутсвует
 
 
 
Тэги:
 
Как умножать матрицы в Excel» rel=»spf-prefetch

Функция МОБР

Синтаксис и описание функции МОБР в Excel:

Рассмотрим расчет обратной матрицы посредством функции МОБР на конкретном примере. Предположим у нас имеется следующая квадратная матрица 3-го порядка:

Выделяем диапазон пустых ячеек E2:G4, куда мы в дальнейшем поместим обратную матрицу. Не снимая выделения ячеек вводим формулу =МОБР(A2:C4) и нажимаем комбинацию клавиш Ctrl + Shift + Ввод для расчета формулы массива по данному диапазону:

При работе с функцией МОБР могут возникнуть следующие ошибки:

  • В том случае, когда исходная матрица является вырожденной (определитель равен нулю), то функция вернет ошибку #ЧИСЛО!;
  • Если число строк и столбцов в матрице не совпадает, то функция возвратит ошибку #ЗНАЧ!;
  • Функция также вернет ошибку #ЗНАЧ!, если хотя бы один из элементов матрицы является пустым или записан в текстовом виде.

Для вычисления обратной матрицы в MS EXCEL существует специальная функция МОБР() или англ. MINVERSE .

Понятие обратной матрицы определено только для квадратных матриц, определитель которых отличен от нуля.

СОВЕТ: О нахождении определителя матрицы читайте статью Вычисление определителя матрицы в MS EXCEL

Матрица А -1 называется обратной для исходной матрицы А порядка n, если справедливы равенства А -1 *А=Е и А*А -1 =Е, где Е единичная матрица порядка n.

Для вычисления обратной матрицы в MS EXCEL существует специальная функция МОБР() .

Если элементы исходной матрицы 2 х 2 расположены в диапазоне А8:В9, то для получения транспонированной матрицы нужно (см. файл примера ):

  • выделить диапазон 2 х 2, который не пересекается с исходным диапазономА8:В9, например, Е8:F9
  • в Cтроке формул ввести формулу = МОБР (A8:B9) и нажать комбинацию клавиш CTRL+SHIFT+ENTER, т.е. нужно ввести ее как формулу массива (формулу можно ввести прямо в ячейку, предварительно нажав клавишу F2)

Если матрица большей размерности, то перед вводом формулы нужно выделить соответственно больший диапазон ячеек.

Массив может быть задан не только как интервал ячеек, например A8:B9, но и как массив констант, например =МОБР() . Запись с использованием массива констант позволяет не указывать элементы в отдельных ячейках, а разместить их в ячейке вместе с функцией. Массив в этом случае указывается по строкам: например, сначала первая строка 5;4, затем через двоеточие записывается следующая строка 3;2. Элементы отделяются точкой с запятой.

Ссылка на массив также может быть указана как ссылка на именованный диапазон.

Некоторые квадратные матрицы не могут быть обращены: в таких случаях функция МОБР() возвращает значение ошибки #ЧИСЛО!. Матрицы не могут быть обращены, у которых определитель равен 0.

Если функция МОБР() вернула значение ошибки #ЗНАЧ!, то либо число строк в массиве не равно числу столбцов, либо какая-либо из ячеек в массиве пуста или содержит текст. Т.е. функция МОБР() пустую ячейку воспринимает не как содержащую 0 (как например, это делает СУММ() ), а как ошибочное значение.

2.9. Виртуальный массив

При анализе данных часто возникает проблема сохранения
промежуточных результатов, которые нужны не сами по себе, а только для
того, чтобы вычислить по ним другие, полезные значения. Например,
остатки в методе PCA часто нам не интересны, а нужны только для
определения полной объясненной дисперсии, ортогональных расстояний и
т.п. При этом размеры таких промежуточных массивов могут быть очень
велики, да и к тому же их приходится вычислять при различных значениях
числа главных компонент. Все это ведет к заполнению рабочей книги
большим количеством ненужных, промежуточных результатов. Этого можно
избежать, если использовать виртуальные массивы. Поясним их суть на
простом примере. 


Рис.38 Пример использования виртуального
массива

Предположим, что задана матрица A, а
нужно вычислить детерминант матрицы AtA
. На Рис. 38 показаны два способа вычисления. Первый – через
последовательность промежуточных массивов, отмеченных красными
стрелками. Второй – с помощью одной формулы, показанной зеленой
стрелкой. Оба пути ведут к одному и тому же результату, но красный путь
занимает на листе много места, а зеленый последовательно использует
несколько промежуточных виртуальных массивов. Все они, по сути,
совпадают с реальными массивами красного пути, но на лист не выводятся.

Первый массив –  это транспонированная матрица At,
получаемая как результат функции
(A).

Второй виртуальный массив получается тогда, когда первый
виртуальный массив умножается на матрицу A с помощью
функции (TRANSPOSE(A), A).  

И, наконец, к этому, второму виртуальному массиву применяется функция
.

Виртуальные массивы очень полезны при вычислении всяческих
вспомогательных характеристик в анализе многомерных данных: остатков,
собственных значений, и т.п. Подробно об этом рассказывается в пособии
Расширение возможностей Chemometrics Add-In.

Как найти обратную матрицу в Excel?

В отличие от транспонированной матрицы, вычислить обратную матрицу технически несколько сложнее. Посчитать обратную матрицу можно через построение матриц алгебраических дополнений и определителя исходной матрицы. Однако сложность вычисления по данному алгоритму имеет квадратичную зависимость от порядка матрицы. К примеру, для обращения квадратной матрицы 3-го порядка нам необходимо будет дополнительно сделать 9 матриц алгебраических дополнений, транспонировать итоговую созданную матрицу и поэлементно разделить на определитель начальной матрицы, что затрудняет возможность подобного расчета в Excel. Поэтому воспользуемся стандартной функцией МОБР, которая позволит найти обратную матрицу:

3.1. Программирование. Язык VBA

Иногда стандартных возможностей Excel не хватает и приходится
добавлять свои собственные подпрограммы. Для этой цели служит специальный язык
программирования – Microsoft Visual Basic for Applications (VBA). С его помощью
можно создавать макросы – наборы команд, выполняющих определенную
последовательность действий, и функции – программы для специальных вычислений на
листе. Макросы – это способ автоматизации стандартных процедур. Однажды создав
макрос, его можно использовать для повтора рутинных действий. Обратиться к
макросу можно через меню Tools-Macro-Macros. Иногда
удобно бывает приписать макрос к новой кнопке на панели инструментов или на
листе.

Функции, созданные пользователем, вызываются также как и
стандартные, встроенные функции – через Formula Bar.

Для того, чтобы макросы и пользовательские функции были
доступны для применения, нужно установить соответствующий уровень
безопасности через меню Tools-Macro-Security
(Excel 2003)  

 


Рис.39 Выбор уровня безопасности в Excel 2003

В Excel 2007 установка уровня безопасности происходит
через Office Button-Excel
Options-Trust Center.  


Рис.40 Выбор уровня безопасности в Excel 2007

Если выбран уровень  Medium
(2003) или Disable all macros with notification
(2007), то при каждом входе в Excel система будет запрашивать разрешение
на использование макросов. Мы рекомендуем установить уровни так, как
показано на Рис. 39 или Рис. 4, но не пренебрегать надежным антивирусом
для проверки посторонних файлов Excel.

При начальной установке Excel 2007 возможности работы с
VBA сильно ограничены. Чтобы восстановить их нужно пройти по цепочке
Office Button– Excel Options–Popular и
включить опцию Show Developer Tab in the Ribbon.
 

Инструменты на ленте

Данный метод основан на использовании специального инструмента на ленте программы. Вот как это работает:

  1. Выделяем диапазон ячеек с числовыми данными, для которых мы хотим определить среднее значение.
  2. Переходим во вкладку “Главная” (если находимся не в ней). В разделе инструментов “Редактирование” находим значок “Автосумма” и щелкаем по небольшой стрелке вниз рядом с ним. В раскрывшемся перечне кликаем по варианту “Среднее”.
  3. Сразу же под выделенным диапазоном отобразится результат, который и является средним значением по всем отмеченным ячейкам.
  4. Если мы перейдем в ячейку с результатом, то в строке формул увидим, какая функция была использована программой для расчетов – это оператор СРЗНАЧ, аргументами которого является выделенный нами диапазон ячеек.

Примечание: Если вместо вертикального выделения (столбца целиком или его части) будет выполнено горизонтальное выделение, то результат отобразится не под областью выделения, а справа от нее.

Данный метод, достаточно прост и позволяет быстро получить нужный результат. Однако помимо очевидных плюсов, есть у него и минус. Дело в том, что он позволяет вычислить усредненное значение только по ячейкам, расположенными подряд, причем, только в одном столбце или строке.

Чтобы было нагляднее, разберем следующую ситуацию. Допустим, у нас есть две заполненные данными строки. Мы хотим получить среднее значение сразу по двум строкам, следовательно, выделяем их и применяем рассмотренный инструмент.

В результате, мы получим средние значения под каждым столбцом, что тоже неплохо, если преследовалась именно такая цель.

Но если, все же, требуется определить среднее значение по нескольким строкам/столбцам или разбросанным в разных местах таблицы ячейкам, пригодятся методы, описанные далее.

Альтернативный способ использования “Среднее” на ленте:

  1. Переходим в первую же свободную ячейку после столбца или строки (в зависимости от структуры данных) и жмем кнопку расчета среднего значения.
  2. Вместо моментального вывода результата на этот раз программа предложит нам предварительно проверить диапазон ячеек, по которому будет считаться среднее значение, и в случае необходимости скорректировать его координаты.
  3. По готовности жмем клавишу Enter и получаем результат в заданной ячейке.

Описание использования функции МОБР в Excel

Как использовать функцию МОБР в Excel рассмотрим ниже на примерах. Но сначала ознакомимся как устроена данная функции.

Аргумент функции МОБР – это массив. Он может быть задан как диапазон ячеек, например A1:C3 как массив констант, например {1;2;3:4;5;6:7;8;9} или как имя диапазона или массива. В случае, если хотя бы одна из ячеек массива пуста или содержит текст, функция возвращает значение ошибки #ЗНАЧ!

Массив должен иметь равное количество строк и столбцов. В случае, если они не равны, то функция МОБР также возвращает значение ошибки #ЗНАЧ!

Формулы, которые возвращают массивы, должны быть введены как формулы массива.

Для вывода обратного массива необходимо после выбора диапазона для данной функции нажать комбинацию клавиш Ctrl+Shift+Enter, а не просто Enter.

Функция МОБР производит вычисления с точностью до 16 значащих цифр, что может привести к незначительным ошибкам округления. Рассмотрим применение данной функции на конкретных примерах.

Использование функции СРЗНАЧ

С данной функцией мы уже успели познакомиться, когда перешли в ячейку с результатом расчета среднего значения. Теперь давайте научимся полноценно ею пользоваться.

  1. Встаем в ячейку, куда планируем выводить результат. Кликаем по значку “Вставить функци” (fx) слева от строки формул.
  2. В открывшемся окне Мастера функций выбираем категорию “Статистические”, в предлагаемом перечне кликаем по строке “СРЗНАЧ”, после чего нажимаем OK.
  3.  На экране отобразится окно с аргументами функции (их максимальное количество – 255). Указываем в качестве значения аргумента “Число1” координаты нужного диапазона. Сделать это можно вручную, напечатав с клавиатуры адреса ячеек. Либо можно сначала кликнуть внутри поля для ввода информации и затем с помощью зажатой левой кнопки мыши выделить требуемый диапазон в таблице. При необходимости (если нужно отметить ячейки и диапазоны ячеек в другом месте таблицы) переходим к заполнению аргумента “Число2” и т.д. По готовности щелкаем OK.
  4. Получаем результат в выбранной ячейке.
  5. Среднее значение не всегда может быть “красивым” за счет большого количества знаков после запятой. Если нам такая детализация не нужна, ее всегда можно настроить. Для этого правой кнопкой мыши щелкаем по результирующей ячейке. В открывшемся контекстном меню выбираем пункт “Формат ячеек”.
  6. Находясь во вкладке “Число” выбираем формат “Числовой” и с правой стороны окна указываем количество десятичных знаков после запятой. В большинстве случаев, двух цифр более, чем достаточно. Также при работе с большими числами можно поставить галочку “Разделитель групп разрядов”. После внесение изменений жмем кнопку OK.
  7. Все готово. Теперь результат выглядит намного привлекательнее.

Выполнение расчетов

Вычисление обратной матрицы в Excel возможно только в том случае, если первичная матрица является квадратной, то есть количество строк и столбцов в ней совпадает. Кроме того, её определитель не должен быть равен нулю. Для вычисления применяется функция массива МОБР. Давайте на простейшем примере рассмотрим подобное вычисление.

Расчет определителя

Прежде всего, вычислим определитель, чтобы понять, имеет первичный диапазон обратную матрицу или нет. Это значение рассчитывается при помощи функции МОПРЕД.

  1. Выделяем любую пустую ячейку на листе, куда будут выводиться результаты вычислений. Жмем на кнопку «Вставить функцию», размещенную около строки формул.

Запускается Мастер функций. В перечне записей, который он представляет, ищем «МОПРЕД», выделяем этот элемент и жмем на кнопку «OK».

Открывается окно аргументов. Ставим курсор в поле «Массив». Выделяем весь диапазон ячеек, в котором расположена матрица. После того, как его адрес появился в поле, жмем на кнопку «OK».

Расчет обратной матрицы

Теперь можно преступить к непосредственному расчету обратной матрицы.

  1. Выделяем ячейку, которая должна стать верхней левой ячейкой обратной матрицы. Переходим в Мастер функций, кликнув по значку слева от строки формул.

В открывшемся списке выбираем функцию МОБР. Жмем на кнопку «OK».

Как видим, появилось значение только в одной ячейке, в которой была формула. Но нам нужна полноценная обратная функция, поэтому следует скопировать формулу в другие ячейки. Выделяем диапазон, равнозначный по горизонтали и вертикали исходному массиву данных. Жмем на функциональную клавишу F2, а затем набираем комбинацию Ctrl+Shift+Enter. Именно последняя комбинация предназначена для обработки массивов.

Как видим, после этих действий обратная матрица вычислена в выделенных ячейках.

На этом расчет можно считать завершенным.

Если вы производите расчет определителя и обратной матрицы только при помощи ручки и бумаги, то над этим вычислением, в случае работы над сложным примером, можно ломать голову очень долго. Но, как видим, в программе Эксель данные вычисления производятся очень быстро, независимо от сложности поставленной задачи. Для человека, который знаком с алгоритмом подобных расчетов в этом приложении, все вычисление сводится к чисто механическим действиям.

Подробно рассмотрим особенности вычисления обратной матрицы в Excel и примеры использования функции МОБР.

В первую очередь освежим в памяти, что обратная матрица — это матрица (записывается как A -1 ), при умножении которой на исходную матрицу (A) дает единичную матрицу (E), другими словами выполняется формула:

Из определения следует важное свойство, что обратная матрица определена только для квадратных (т.е. число строк и столбцов совпадает) и невырожденных матриц (т.е

определитель отличен от нуля).

Ссылка на основную публикацию