Все формулы длины диагонали квадрата

Формула площади прямоугольника

Площадь прямоугольника обычно определяют как произведение длины на ширину. Эта формула выводится через разделение фигуры диагональю на два прямоугольных треугольника. Площадь каждой из фигур это половина произведения катетов. Общая площадь двух фигур целое произведение катетов. Этими катетами как раз и являются длина и ширина прямоугольника.

Но случаются ситуации, когда приходится искать площадь, но значений длины или ширины нет. Что делать тогда? Воспользоваться общей для всех четырех угольников формулой и найти площадь прямоугольника через диагонали.

Площадь любого выпуклого четырех угольника равняется произведению диагоналей на синус угла между ними. Диагонали прямоугольного треугольника равны между собой, поэтому значения угла и одной диагонали хватит для нахождения площади.

$$S={1\over2}*d^2*sin(a)$$

Внимательно следите за тем, какой именно угол дан в условиях задачи. Необходим острый угол при диагоналях. Если тупой, то можно воспользоваться формулой смежного угла. Если дан какой-либо из углов между стороной и диагональю, то придется искать другие пути решения.

Возможны ситуации, когда нужно найти площадь, а известен угол между диагональю и стороной и значение диагонали и стороны. Тогда нужно найти площадь прямоугольного треугольника через формулу с применением синуса и удвоить ее.

Рис. 3. Площадь прямоугольника.

В этом случае площадь прямоугольника будет равна:

S=d*b*sin(a)

Что мы узнали?

Мы поговорили о площади прямоугольного треугольника. Выделили отдельно формулу площади прямоугольника через диагонали. Поговорили о случаях, когда применение этой формулы невозможно или затруднено и привели альтернативный вариант решения.

Диагональ квадрата.

Диагональю квадрата является всякий отрезок, который соединяет 2-е вершины противолежащих углов квадрата.

Диагональ всякого квадрата больше стороны этого квадрата в √2 раз.

Формулы для определения длины диагонали квадрата:

1. Формула диагонали квадрата через сторону квадрата:

2. Формула диагонали квадрата через площадь квадрата:

3. Формула диагонали квадрата через периметр квадрата:

4. Сумма углов квадрата = 360°:

5. Диагонали квадрата одной длины:

6. Все диагонали квадрата делят квадрат на 2-е одинаковые фигуры, которые симметричны:

7. Угол пересечения диагоналей квадрата равен 90°, пересекая друг друга, диагонали делятся на две равные части:

8. Формула диагонали квадрата через длину отрезка l:

9. Формула диагонали квадрата через радиус вписанной окружности:                                      

R — радиус вписанной окружности;

D — диаметр вписанной окружности;

d — диагональ квадрата.

10. Формула диагонали квадрата через радиус описанной окружности:                                    

R – радиус описанной окружности;

D – диаметр описанной окружности;

d – диагональ.

11. Формула диагонали квадрата через линию, которая выходит из угла на середину стороны квадрата:

C – линия, которая выходит из угла на середину стороны квадрата;

d – диагональ.

Периметр квадрата. Площадь квадрата.

Вписанный круг в квадрат – это круг, примыкающий к серединам сторон квадрата и имеющий центр на пересечении диагоналей квадрата.

Радиус вписанной окружности — сторона квадрата (половина).

Площадь круга вписанного в квадрат меньше площади квадрата в π/4 раза.

Круг, описанный вокруг квадрата — это круг, который проходит через 4-ре вершины квадрата и который имеет центр на пересечении диагоналей квадрата.

Радиус окружности описанной вокруг квадрата больше радиуса вписанной окружности в √2 раз.

Радиус окружности описанной вокруг квадрата равен 1/2 диагонали.

Определения

Поговорим о нескольких определениях, которые необходимы для того, чтобы разобраться в этой теме.

Прямоугольник – это выпуклый четырехугольник, стороны которого попарно равны и параллельны, а углы равняются 90 градусам. Частным случаем прямоугольника является квадрат. Квадрат – это прямоугольник, у которого все стороны равны между собой.

Рис. 1. Прямоугольник.

Что такое диагональ? Диагональ – это отрезок, который соединяет противолежащие стороны фигуры. Диагональ существует во всех фигурах, число вершин которых больше 3.

Четырехугольники подразделяются на выпуклые и невыпуклые. Выпуклые четырех угольники определяют по следующему правилу: через любые две соседние вершины фигуры проводят прямую. Если фигура лежит по одну сторону от прямой, то четырехугольник выпуклый, если нет – невыпуклый. Все известные четырехугольники являются выпуклыми.

Рис. 2. Невыпуклый четырехугольник.

Вычисление по радиусу описанной и вписанной окружности

Ещё один способ, который на само деле очень простой. Радиус описанной окружности будем обозначать латинской буквой R, радиус вписанной окружности будем обозначать латинской буквой r.

Сначала разберёмся с описанной окружностью. В данной ситуации её радиус составляет ровно половину диагонали (это нетрудно убедиться с использованием построения), таким образом: R = 1/2*d. отсюда имеем: d = два*R. Снова поясним наши рассуждения на примере. Пусть R = 45 километров. Получим, d = два*45 = 90 километров.

И, наконец, рассмотрим метод, связанный с радиусом вписанной окружности. Опять-таки из построения чётко видно, что диаметр вписанной окружности равняется стороне квадрата. Таким образом, её радиус вдвое меньше стороны. Запишем это в виде формулы: r = 1/2*a. Отсюда следует, a = 2*r. Снова воспользуемся формулой из первого метода, подставим вместо стороны её выражение через радиус вписанной окружности. Выражение примет вид: d = rad2*a = rad2*2*r.

Ещё раз воспользуемся помощью примера. Пусть r = 98 метров. Тогда имеем, d = rad2*2*98 = 196*rad2.

Определения и соглашения

  1. Квадрат — это четырёхугольник с равными сторонами, все углы которого являются прямыми, то есть равны 90 градусов. Данная фигура одновременно и ромб, и прямоугольник, поэтому сохраняет все их свойства.
  2. Диагональ многоугольника — это отрезок, соединяющий две его противоположные вершины. В статье её будем обозначать буквой d.
  3. Противоположными называются вершины, не лежащие на одной стороне.
  4. Корень квадратный из числа, это такое число, которое при умножении само на себя даст исходное. В геометрии используются только положительные значения квадратного корня. В статье его будем обозначать сокращением rad (от латинского radical — корень).
  5. Сторону квадрата будем обозначать буквой a.

Как понятно из вышеизложенного, у квадрата только две диагонали. Поскольку квадрат является прямоугольником и сохраняет его свойства, то они равны между собой. Рассмотрим различные методы нахождения её длины.

Заключение

Таким образом, мы рассмотрели в статье пять принципиально различных методов вычисления диагонали квадрата. Если, на первый взгляд, задача казалась сложной, то после проведённых нами рассуждений стало очевидно, что особых проблем здесь нет. Сведём все полученные нами формулы в одну таблицу.

  1. d = rad2*a;
  2. d = rad2*radS;
  3. d = rad2*P/4;
  4. d = 2*R;
  5. d = rad2*2*r.

Хочется ещё отметить, что с помощью первой из наших формул очень легко построить отрезок, равный корню квадратному из двух. Для этого строим квадрат со стороной единица, его диагональ и будет равняться искомому отрезку.

Если на полученной диагонали мы построим прямоугольник, используя её как длину, а ширину возьмём равной единице, то получим отрезок равный ещё одному иррациональному числу корень квадратный из трёх.

Продолжая нашу цепочку и далее, мы научимся строить отрезки равные любому иррациональному числу.

Ссылка на основную публикацию