Площадь поверхности прямоугольного параллелепипеда, онлайн расчет

Введение

Что общего у кирпича, коробки из-под телевизора и дома? (Рис. 1.)

Рис. 1. Кирпич, дом и коробка из-под телевизора

Можно ли понять что-то про них такое, что относится к каждому из этих предметов?

В этом и состоит задача математики: изучать нечто общее у совершенно разных вещей.

Например, мяч и глобус – шары и Земля – почти шар. (Рис. 2.)

Рис. 2. Мяч и глобус

Но вернемся к кирпичу, зданию и коробке. Как их возможно описать?

Это фигуры, ограниченные плоскостями (рис. 3). Каждая грань является прямоугольником. Все такие фигуры называются прямоугольными параллелепипедами.Рис. 3. Грани прямоугольного параллелепипеда

По названию видно, что бывают и непрямоугольные параллелепипеды. Действительно, гранями параллелепипеда могут быть не только прямоугольники, а и произвольные параллелограммы (рис. 4).

Рис. 4. Произвольный параллелограмм

Так же, как из прямоугольника можно сделать обычный параллелограмм, так и из прямоугольного параллелепипеда легко сделать «косой параллелепипед» (рис. 5).

Рис. 5. Косой параллелепипед

Геометрия параллелепипеда

Прямоугольный параллелепипед представляет собой два одинаковых прямоугольника, лежащие в параллельных плоскостях и четыре соединяющих их прямоугольника, которые образуют боковую поверхность фигуры. В общем случае параллелепипед представляет собой частный случай прямой четырехугольной призмы. Параллелепипед — наиболее распространенная в реальной жизни фигура. Именно форму данного многогранника имеют такие объекты как дома, комнаты, кирпичи, картонные коробки, блоки компьютеров, упаковки молока, спичечные коробки и многое другое.

Реальный мир состоит их различных геометрических фигур, поэтому вам может понадобиться калькулятор, который мгновенно посчитает площадь поверхности объекта, имеющего форму прямоугольного параллелепипеда, будь то корпусная мебель, кладовка или системный блок стационарного компьютера.

Задача

Сколько необходимо краски для покраски картонной коробки, если высота, ширина и длина коробки составляют 20, 30 и 60 см соответственно? Расход краски составляет 1 г на каждые 100 см2.

Решение

Какую площадь надо покрасить? Очевидно, это площадь поверхности коробки, ведь красить мы будем ее поверхность.

Найдем площадь поверхности коробки. Коробка – это прямоугольный параллелепипед. Площадь поверхности – это сумма площадей всех граней, причем грани попарно равны.

Расход краски – 1 г на 100 см2. Чтобы найти необходимое количество краски, делим общую площадь на 100:

Получается, что необходимо 72 грамма краски, чтобы покрасить коробку.

Вывод

На данном уроке был изучен прямоугольный параллелепипед, его основные свойства и элементы. Кроме того, была выведена формула его поверхности и решена задача на применение данной формулы.

Список литературы

1. Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. Математика 6. – М.: Мнемозина, 2012.

2. Мерзляк А.Г., Полонский В.В., Якир М.С. Математика 6 класс. – Гимназия, 2006.

3. Депман И.Я., Виленкин Н.Я. За страницами учебника математики. – Просвещение, 1989.

4. Рурукин А.Н., Чайковский И.В. Задания по курсу математика 5-6 класс – ЗШ МИФИ, 2011.

5) Рурукин А.Н., Сочилов С.В., Чайковский К.Г. Математика 5-6. Пособие для учащихся 6-х классов заочной школы МИФИ. – ЗШ МИФИ, 2011. 

6. Шеврин Л.Н., Гейн А.Г., Коряков И.О., Волков М.В. Математика: Учебник-собеседник для 5-6 классов средней школы. Библиотека учителя математики. – Просвещение, 1989.    

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

1. Портал «Знайка» (Источник)

2. Портал «Первое сентября» (Источник)

3. Портал  «Презентации для школьников» (Источник)

Домашнее задание

1. Сколько краски надо, чтобы покрасить кубик с высотой, шириной и длиной 20, 45 и 60 см соответственно? Расход краски составляет 5 грамм на каждые 100 см2.

Задачи по теме

Задание первое. Условие. Необходимо узнать длину диагонали куба, если площадь всей его поверхности равна 200 мм2.

Решение. Начать нужно с получения выражения для искомой величины. Ее квадрат равен трем квадратам стороны куба. Это значит, что диагональ равна «а», умноженной на корень из 3.

Но сторона куба неизвестна. Здесь потребуется воспользоваться тем, что известна площадь всей поверхности. Из формулы получается, что «а» равно квадратному корню из частного S и 6.

Осталось только сосчитать. Ребро куба оказывается равным √ (200/6), что равно 10/ √3 (мм). Тогда диагональ получится равной (10/ √3) * √3 = 10 (мм).

Ответ. Диагональ куба равна 10 мм.

Задание второе. Условие. Необходимо вычислить площадь поверхности куба, если известно, что его объем равен 343 см2.

Решение. Потребуется воспользоваться той же формулой для площади куба. В ней опять неизвестно ребро тела. Но зато дан объем. Из формулы для куба очень просто узнать «а». Оно будет равно кубическому корню из 343. Простой подсчет дает такое значение для ребра: а = 7 см.

Теперь осталось только сосчитать его квадрат и умножить на 6. а2 = 72 = 49, отсюда площадь окажется равной 49 * 6 = 294 (см2).

Ответ. S = 294 см2.

Задание третье. Условие. Дана правильная четырехугольная призма со стороной основания 20 дм. Необходимо найти ее боковое ребро. Известно, что площадь параллелепипеда равна 1760 дм2.

Решение. Начинать рассуждения нужно с формулы для площади всей поверхности тела. Только в ней нужно учесть, что ребра «а» и «в» равны. Это следует из утверждения о том, что призма правильная. Значит, в его основании лежит четырехугольник с равными сторонами. Отсюда а = в = 20 дм.

Учитывая это обстоятельство, формула площади упростится до такой:

S = 2 * (а2 + 2ас).

В ней известно все, кроме искомой величины «с», которая как раз и является боковым ребром параллелепипеда. Чтобы его найти, нужно выполнить преобразования:

  • разделить все неравенство на 2;
  • потом перенести слагаемые так, чтобы слева оказалось слагаемое 2ас, а справа — деленная на 2 площадь и квадрат «а», причем последнее будет со знаком «-»;
  • затем поделить равенство на 2а.

В итоге получится выражение:

с = (S/2 — а2) / (2а)

После подстановки всех известных величин и выполнения действий получается, что боковое ребро равно 12 дм.

Ответ. Боковое ребро «с» равняется 12 дм.

Задание четвертое. Условие. Дан прямоугольный параллелепипед. Одна из его граней имеет площадь, равную 12 см2. Необходимо вычислить длину ребра, которое перпендикулярно этой грани. Дополнительное условие: объем тела равен 60 см3.

Решение. Пусть известна площадь той грани, которая расположена лицом к наблюдателю. Если принять за обозначение стандартные буквы для измерений параллелепипеда, то в основании ребра будут «а» и «в», вертикальное — «с». Исходя из этого, площадь известной грани определится как произведение «а» на «с».

Теперь нужно воспользоваться известным объемом. Его формула для прямоугольного параллелепипеда дает произведение всех трех величин: «а», «в» и «с». То есть известная площадь, умноженная на «в», дает объем. Отсюда получается, что искомое ребро можно вычислить из уравнения:

12 * в = 60.

Элементарный расчет дает результат 5.

Ответ. Искомое ребро равно 5 см.

Задание пятое. Условие. Дан прямой параллелепипед. В его основании лежит параллелограмм со сторонами 6 и 8 см, острый угол между которыми равен 30º. Боковое ребро имеет длину 5 см. Требуется вычислить полную площадь параллелепипеда.

Решение. Это тот случай, когда нужно узнать площади всех граней по отдельности. Или, точнее, трех пар: основание и две боковые.

Поскольку в основании расположен параллелограмм, то его площадь вычисляется как произведение стороны на высоту к ней. Сторона известна, а высота — нет. Ее нужно сосчитать. Для этого потребуется значение острого угла. Высота образует в параллелограмме прямоугольный треугольник. В нем катет равен произведению синуса острого угла, который ему противолежит, на гипотенузу.

Пусть известная сторона параллелограмма — это «а». Тогда высота будет записана как в * sin 30º. Таким образом, площадь основания равна а * в * sin 30º.

С боковыми гранями все проще. Они — прямоугольники. Поэтому их площади — это произведение одной стороны на другую. Первая — а * с, вторая — в * с.

Осталось объединить все в одну формулу и сосчитать:

S = 2 * (а * в * sin 30º + а * с + в * с )

После подстановки всех величин получается, что искомая площадь равна 188 см2.

Ответ. S = 188 см2.

Примеры из жизни

Покраска стен

Допустим, вы хотите покрасить стены, пол и потолок кухни белой краской. Вам необходимо купить достаточное количество краски для обработки выбранного помещения. Зная, что расход масляной краски на 1 квадратный метр поверхности составляет приблизительно 200 грамм, вы можете определить, сколько материала вам понадобится для работы. Пусть высота кухонного помещения составляет 3 м, ширина 2 м, а длина — 5 м. Введите эти данные в онлайн-калькулятор и вы получите результат в виде:

S = 62

Таким образом, вам понадобится покрасить 62 квадратных метров поверхности. Для этого вам потребуется купить 12,4 кг масляной краски или 5 банок краски по 2,8 кг.

Производство

Допустим, вы работаете на производстве и покрываете стальной квадратный профиль защитным покрытием, окуная детали в ванную с раствором. Для правильного расчета параметров покраски вам необходимо знать площадь поверхности одного стального профиля, который имеет форму параллелепипеда. Стандартный квадратный профиль имеет размеры: длина 6 м, сторона а = 80 мм, сторона b = 80 мм. Для правильного расчета вам необходимо подставить все размеры в одних единицах измерения, к примеру, в сантиметрах. В этом случае вбейте в онлайн-калькулятор три стороны параллелепипеда, которые равны 600, 8 и 8. Вы получите результат в виде:

S = 19 328

Таким образом, полная площадь поверхности стального профиля составляет 19 328 квадратных сантиметров или 1,9828 квадратных метра. Зная площадь поверхности одного профиля, вы легко сможете определить параметры покраски деталей защитным покрытием.

Элементы прямоугольного параллелепипеда

У любого прямоугольного параллелепипеда есть 8 вершин. Зачастую их обозначают , , ,  снизу, , , ,  – сверху. (Рис. 7.)

Рис. 7. Прямоугольный параллелепипед

6 прямоугольников, вершины которых совпадают с вершинами параллелепипеда, называются гранями:

  • передняя  и задняя ,
  • верхняя  и нижняя ,
  • левая  и правая .

На рисунке они не все выглядят как прямоугольники, это происходит потому что, мы смотрим на них не прямо, а под углом.

Еще есть отрезки , ,  и так далее. Они являются сторонами прямоугольников, то есть граней, и называются ребрами. У любого параллелепипеда 12 ребер.

Итак, у любого параллелепипеда всегда 8 вершин, 6 граней и 12 ребер.

Многогранники. Теорема Эйлера для многогранников.

Разберемся подробнее с элементами, о которых мы поговорили: гранями, ребрами, вершинами.

Отрезок ограничен точками. Граница области на плоскости – линия или несколько отрезков.

Из отрезков и их границ (точек) на плоскости мы собираем многоугольники (треугольники, четырехугольники, … 100-угольники).

В пространстве имеем плоскости, их границы – ребра, кроме того, у ребер тоже есть граница – точки под названием вершины.

Из них можно собирать пространственные аналоги многоугольников – многогранники (рис. 1). Параллелепипед – один из примеров многогранников.

Рис. 1. Отрезок, многоугольник и многогранник

Самый «маленький» многогранник – треугольная пирамида (или тетраэдр) (рис. 2), по аналогии с самым «маленьким» многоугольником – треугольником.

Рис. 2. Тетраэдр

Интересный факт: в любом многограннике выполняется следующее свойство, где  – количество граней,  – количество вершин,  – количество ребер.

Давайте посчитаем:

1) Тетраэдр: 4 вершины, 4 грани и 6 ребер.

Рис. 3. Тетраэдр

2) Параллелепипед: 8 вершин, 6 граней и 12 ребер.

Рис. 4. Параллелепипед

3) Пятиугольная призма: 10 вершин, 7 граней и 15 ребер

Рис.5. Пятиугольная призма

Количество вершин и граней вместе всегда на 2 больше, чем количество ребер. И это свойство выполняется для всех многогранников. Это свойство сформулировал Леонард Эйлер в свое время. Свойство так и назвали: Теорема Эйлера.

, где:  – количество граней,  – количество вершин,  – количество рёбер.

Как начертить прямоугольный параллелепипед?

Сначала необходимо нарисовать ближнюю к нам сторону, стенку, грань (это прямоугольник) затем верхнюю. Рисовать надо ее чуть-чуть под углом, как будто бы смотришь на нее немного сбоку.

Теперь необходимо нарисовать правую грань. Так как все грани – это прямоугольники, то нужно следить, чтобы противоположные стороны этих граней были параллельны друг другу.

Понятно, что, глядя на настоящую объемную фигуру, невозможно увидеть ее сразу со всех сторон.

Остальные, «невидимые», стороны тоже нужны. Поэтому договорились те линии, которые не видны, рисовать пунктиром. Необходимо дорисовать их, соблюдая параллельность. (Рис. 6.)

Рис. 6. Чертеж прямоугольного параллелепипеда  

Все, изображение прямоугольного параллелепипеда готово.

Ссылка на основную публикацию