Логарифм. свойства логарифма (корень логарифма, смена основания)

Сравнение иррациональный чисел: универсальный алгоритм

В заключении хотел бы еще раз вернуться к иррациональным числам. На их примере мы сейчас посмотрим, как сравнивать рациональные и иррациональные величины в математике. Для начала по между ними вот такую галочку — знак «больше» или «меньше», но мы пока не знаем, в какую сторону он направлен. Запишем:

Зачем вообще нужны какие-то алгоритмы сравнения? Дело в том, что в данной задаче нам очень повезло: в процессе решения возникло разделяющее число 1, про которое мы точно можем сказать:

Однако далеко не всегда вы с ходу увидите такое число. Поэтому давайте попробуем сравнить наши числа «в лоб», напрямую.

Как это делается? Делаем то же самое, что и с обычными неравенствами:

  1. Сначала, если бы у нас где-то были отрицательные коэффициенты, то мы умножили бы обе части неравенства на −1. Разумеется, поменяв при этом знак. Вот такая галочка V изменилась бы на такую — Λ.
  2. Но в нашем случае обе стороны уже положительны, поэтому ничего менять не надо. Что действительно нужно, так это возвести обе части в квадрат, чтобы избавится от радикала.

При решении это оформляется вот таким образом:

Теперь это все легко сравнивается. Дело в том, что 64/81

Все, мы получили строгое доказательство, что все числа отмечены на числовой прямой х правильно и именно в той последовательности, в которой они должны быть на самом деле. Вот к такому решению никто не придерется, поэтому запомните: если вы сразу не видите разделяющее число (в нашем случае это 1), то смело выписывайте приведенную выше конструкцию, умножайте, возводите в квадрат — и в итоге вы получите красивое неравенство. Из этого неравенства точно будет понятно, какое число больше, а какое — меньше.

Возвращаясь к нашей задаче, хотелось бы еще раз обратить ваше внимание на то, что мы делали в самом начале при решении нашего уравнения. А именно: мы внимательно посмотрели на наше исходное логарифмическое уравнение и попытались свести его к каноническому логарифмическому уравнению

Где слева и справа стоят только логарифмы — без всяких дополнительных слагаемых, коэффициентов спереди и т. д. Нам нужны не два логарифма по основанию или , именно логарифм, равный другому логарифму.

Кроме того, основания логарифмов также должны быть равны. При этом если уравнение составлено грамотно, то с помощью элементарных логарифмических преобразований (сумма логарифмов, преобразование числа в логарифм и т.д.) мы сведем это уравнение именно к каноническому.

Поэтому впредь, когда вы видите логарифмическое равнение, которое не решается сразу «в лоб», не стоит теряться или пробовать подобрать ответ. Достаточно выполнить следующие шаги:

  1. Привести все свободные элементы к логарифму;
  2. Затем эти логарифмы сложить;
  3. В полученной конструкции все логарифмы привести к одному и тому же основанию.

В результате вы получите простое уравнение, которое решается элементарными средствами алгебры из материалов 8—9 класса. В общем, заходите на мой сайт, тренируйтесь решать логарифмы, решайте логарифмические уравнения как я, решайте их лучше меня. А у меня на этом все. С Вами был Павел Бердов. До новых встреч!

  1. Задача C1: логарифмы и тригонометрия в одном уравнении
  2. Задача C1: еще одно показательное уравнение
  3. Пробный ЕГЭ-2011 по математике, вариант №8
  4. Пробный ЕГЭ 2012. Вариант 3 (без логарифмов)
  5. Метод коэффициентов, часть 1
  6. Изюм и виноград (смеси и сплавы)

Избавление от знака логарифма

Напоминаю, что сейчас мы можем избавиться от логарифмов и оставить следующее выражение:

Давайте раскроем скобки слева. Получим:

Перенесем все из левой части в правую:

Приведем подобные и получим:

Можем разделить обе части этого уравнения на 2, чтобы упростить коэффициенты, и получим:

Перед нами обычное биквадратное уравнение, и его корни легко считаются через дискриминант. Итак, запишем дискриминант:

Прекрасно, Дискриминант «красивый», корень из него равен 7. Все, считаем сами иксы. Но в данном случае корни получатся не , а 2, потому что у нас биквадратное уравнение. Итак, наши варианты:

Обратите внимание: мы извлекали корни, поэтому ответов будет два, т.к. квадрат — функция четная

И если мы напишем лишь корень из двух, то второй корень мы просто потеряем.

Теперь расписываем второй корень нашего биквадратного уравнения:

Опять же, мы извлекаем арифметический квадратный корень из обеих частей нашего уравнения и получаем два корня. Однако помните:

Итого мы получили четыре корня. Все они действительно являются решениями нашего исходного уравнения. Взгляните: в нашем исходном логарифмическом уравнении внутри логарифмов стоит либо 92 + 5 (эта функция всегда положительна), либо 84 + 14 — она тоже всегда положительна. Следовательно, область определения логарифмов выполняется в любом случае, какой бы корень мы не получили, а это значит, что все четыре корня являются решениями нашего уравнения.

Прекрасно, теперь переходим ко второй части задачи.

Отбор корней логарифмического уравнения на отрезке

Отбираем из наших четырех корней те, которые лежат на отрезке [−1; 8/9]. Возвращаемся к нашим корням, и сейчас будем выполнять их отбор. Для начала предлагаю начертить координатную ось и отметить на ней концы отрезка:

Обе точки будут закрашенные. Т.е. по условию задачи нас интересует заштрихованный отрезок. Теперь давайте разбираться с корнями.

Иррациональные корни

Начнем с иррациональных корней. Заметим, что 8/9

Из этого следует, что корень из двух не попадает в интересующий нас отрезок. Аналогично мы получим и с отрицательным корнем: он меньше, чем −1, т. е. лежит левее интересующего нас отрезка.

Рациональные корни

Остается два корня: = 1/2 и = −1/2. Давайте заметим, что левый конец отрезка (−1) — отрицательный, а правый (8/9) — положительный. Следовательно, где-то между этими концами лежит число 0. Корень = −1/2 будет находиться между −1 и 0, т.е. попадет в окончательный ответ. Аналогично поступаем с корнем = 1/2. Этот корень также лежит на рассматриваемом отрезке.

Убедиться, что число 8/9 больше, чем 1/2, можно очень просто. Давайте вычтем эти числа друг из друга:

Получили дробь 7/18 > 0, а это по определению означает, что 8/9 > 1/2.

Давайте отметим подходящие корни на оси координат:

Окончательным ответом будут два корня: 1/2 и −1/2.

Пример 5

Дано: . Найти:

Решение

Заметим, что все числа в условии – это комбинации двоек и троек: ; ; ; . Перейдем в данных логарифмах к основанию 2 или 3. Например, к трем:

1. 

Таким образом: 

Выразим из этого выражения : 

Домножаем это выражение на 3: 

Вычтем из левой и правой части выражения 1 и разделим эти части на 2:

2. 

3. Так как , то: 

Домножим числитель и знаменатель на : 

Ответ: .

Пример

Упростите выражение:

Решение

Согласно основному логарифмическому тождеству представим 2 в виде:

Тогда:

 

Следовательно:

В данном примере мы попутно доказали полезное свойство:

Ответ: 0.

Список литературы

1. Мордкович А.Г. Алгебра и начала математического анализа 10-11 кл. – М.: Мнемозина, 2001.

2. Муравин Г.К., Муравина О.В. Алгебра и начала математического анализа. – М.: Дрофа. 

3. Колмогоров А.Н., Абрамов А.М., Дудницын Ю.П. и др. Алгебра и начала математического анализа 10-11 кл. – М.: Просвещение, 1990.

4. Мордкович А.Г., Денищева Л.О., Корешкова Т.А., Мишустина Т.Н., Тульчинская Е.Е. Алгебра и начала анализа 10-11 кл.: Задачник для общеобразоват. учреждений. – М.: Мнемозина, 2001.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

1. Интернет-сайт youtube.com (Источник)

2. Интернет-сайт «Гипермаркет Знаний» (Источник)

3. Интернет-портал «ЯКласс» (Источник)

4. Интернет-сайт «Уроки математики» (Источник)

Домашнее задание

1. Задания 1596, 1602, 1612 (стр. 237–239) – Мордкович А.Г., Денищева Л.О., Корешкова Т.А., Мишустина Т.Н., Тульчинская Е.Е. Алгебра и начала анализа 10-11 кл.: Задачник (Источник)

2. Докажите тождество: .

3. Докажите тождество: .

Использование свойств логарифмов при вычислении

Мощным инструментом вычисления логарифмов является использование свойств логарифмов.

Некоторые свойства логарифмов позволяют сразу указать значение логарифмов. К таким свойствам относятся свойство логарифма единицы и свойство логарифма числа, равного основанию: log11=logaa=0 и logaa=logaa1=1. То есть, когда под знаком логарифма находится число 1 или число a, равное основанию логарифма, то в этих случаях логарифмы равны и 1 соответственно.

Пример.

Чему равны логарифмы и lg10?

Решение.

Так как , то из определения логарифма следует .

Во втором примере число 10 под знаком логарифма совпадает с его основанием, поэтому десятичный логарифм десяти равен единице, то есть, lg10=lg101=1.

Ответ:

и lg10=1.

Отметим, что вычисление логарифмов по определению (которое мы разобрали в предыдущем пункте) подразумевает использование равенства logaap=p, которое является одним из свойств логарифмов.

На практике, когда число под знаком логарифма и основание логарифма легко представляются в виде степени некоторого числа, очень удобно использовать формулу , которая соответствует одному из свойств логарифмов. Рассмотрим пример нахождения логарифма, иллюстрирующий использование этой формулы.

Пример.

Вычислите логарифм .

Решение.

Число под знаком логарифма и основание логарифма можно записать в виде степени двойки: и . Таким образом, . Для вычисления полученного логарифма воспользуемся свойством логарифма , получаем (при затруднениях с вычислениями смотрите статью ).

Ответ:

.

Не упомянутые выше свойства логарифмов также используются при вычислении, но об этом поговорим в следующих пунктах.

Замечание по поводу логарифмический уравнений

Перед тем как переходить непосредственно к уравнению, хочу поделиться небольшой исторической справкой. Дело в том, что ЕГЭ по математике в том виде, котором нам предстоит его сдавать, существует в России уже не первый год. И то уравнение, которое вы сейчас видите на своих экранах, появилось в контрольно-измерительных материалах уже давно.

Однако из года в год ко мне приходят ученики которые пытаются решать вот такие, прямо скажем, непростые уравнения, но при этом не могут понять: с чего им вообще начинать и как подступиться к логарифмам? Такая проблема может возникнуть даже у сильных, хорошо подготовленных учеников.

В результате многие начинают опасаться этой темы, а то и вовсе считать себя тупыми. Так вот, запомните: если у вас не получается решить такое уравнение, это совершенно не значит, что вы — тупые. Потому что, например, вот с таким уравнением вы справитесь практически устно:

А если это не так, вы сейчас не читали бы этот текст, поскольку были заняты более простыми и приземленными задачами. Конечно, кто-то сейчас возразит: «А какое отношение это простейшее уравнение имеет к нашей здоровой конструкции?» Отвечаю: любое логарифмическое уравнение, каким бы сложным оно ни было, в итоге сводится вот к таким простейшим, устно решаемым конструкциям.

Разумеется, переходить от сложных логарифмических уравнений к более простым нужно не с помощью подбора или танцев с бубном, а по четким, давно определенным правилам, которые так и называются — правила преобразования логарифмических выражений. Зная их, вы без труда разберетесь даже с самыми навороченными уравнениями в ЕГЭ по математике.

И именно об этих правилах мы будем говорить в сегодняшнем уроке. Поехали!

Нахождение логарифмов через другие известные логарифмы

Информация этого пункта продолжает тему использования свойств логарифмов при их вычислении. Но здесь основное отличие состоит в том, что свойства логарифмов используются для того, чтобы выразить исходный логарифм через другой логарифм, значение которого известно. Приведем пример для пояснения. Допустим, мы знаем, что log23≈1,584963, тогда мы можем найти, например, log26, выполнив небольшое преобразование с помощью свойств логарифма: log26=log2(2·3)=log22+log23≈1+1,584963=2,584963.

В приведенном примере нам было достаточно использовать свойство логарифма произведения. Однако намного чаще приходится применять более широкий арсенал свойств логарифмов, чтобы вычислить исходный логарифм через заданные.

Пример.

Вычислите логарифм 27 по основанию 60, если известно, что log602=a и log605=b.

Решение.

Итак, нам нужно найти log6027. Несложно заметить, что 27=33, и исходный логарифм в силу свойства логарифма степени можно переписать как 3·log603.

Теперь посмотрим, как log603 выразить через известные логарифмы. Свойство логарифма числа, равного основанию, позволяет записать равенство log6060=1. С другой стороны log6060=log60(22·3·5)=log6022+log603+log605=2·log602+log603+log605. Таким образом, 2·log602+log603+log605=1. Следовательно, log603=1−2·log602−log605=1−2·a−b.

Наконец, вычисляем исходный логарифм: log6027=3·log603=3·(1−2·a−b)=3−6·a−3·b.

Ответ:

log6027=3·(1−2·a−b)=3−6·a−3·b.

Отдельно стоит сказать о значении формулы перехода к новому основанию логарифма вида . Она позволяет от логарифмов с любыми основаниями переходить к логарифмам с конкретным основанием, значения которых известны или есть возможность их отыскать. Обычно от исходного логарифма по формуле перехода переходят к логарифмам по одному из оснований 2, e или 10, так как по этим основаниям существуют таблицы логарифмов, позволяющие с определенной степенью точности вычислять их значения. В следующем пункте мы покажем, как это делается.

Зачем придумали логарифм?

Чтобы это понять, давайте решим уравнение: \(3^{x}=9\). Просто подберите \(x\), чтобы равенство сработало. Конечно, \(x=2\).

А теперь решите уравнение: \(3^{x}=8\).Чему равен икс? Вот в том-то и дело.

Самые догадливые скажут: «икс чуть меньше двух». А как точно записать это число? Для ответа на этот вопрос и придумали логарифм. Благодаря ему, ответ здесь можно записать как \(x=\log_{3}{8}\).

Хочу подчеркнуть, что \(\log_{3}{8}\), как и любой логарифм — это просто число. Да, выглядит непривычно, но зато коротко. Потому что, если бы мы захотели записать его в виде десятичной дроби, то оно выглядело бы вот так: \(1,892789260714…..\)

Пример: Решите уравнение \(4^{5x-4}=10\)

Решение:

\(4^{5x-4}=10\)

                              

\(4^{5x-4}\) и \(10\) никак к одному основанию не привести. Значит тут не обойтись без логарифма.

Воспользуемся определением логарифма:
\(a^{b}=c\)       \(\Leftrightarrow\)       \(\log_{a}{c}=b\)

\(\log_{4}{10}=5x-4\)

 

Зеркально перевернем уравнение, чтобы икс был слева

\(5x-4=\log_{4}{10}\)

 

Перед нами линейное уравнение. Перенесем \(4\) вправо.

И не пугайтесь логарифма, относитесь к нему как к обычному числу. 

\(5x=\log_{4}{10}+4\)

 

Поделим уравнение на 5

\(x=\)\(\frac{\log_{4}{10}+4}{5}\)

Вот наш корень. Да, выглядит непривычно, но ответ не выбирают.

Ответ: \(\frac{\log_{4}{10}+4}{5}\)

Основное логарифмическое тождество

У логарифмов есть множество свойств. Одно из них носит название «Основное логарифмическое тождество» и выглядит вот так:

   \(a^{\log_{a}{c}}=c\)   

Это свойство вытекает напрямую из определения. Посмотрим как именно эта формула появилась.

Вспомним краткую запись определения логарифма:

если     \(a^{b}=c\),    то   \(\log_{a}{c}=b\)

То есть, \(b\) – это тоже самое, что \(\log_{a}{c}\). Тогда мы можем в формуле \(a^{b}=c\) написать \(\log_{a}{c}\) вместо \(b\). Получилось \(a^{\log_{a}{c}}=c\) – основное логарифмическое тождество.

Остальные свойства логарифмов вы можете найти здесь. С их помощью можно упрощать и вычислять значения выражений с логарифмами, которые «в лоб» посчитать сложно.

Пример: Найдите значение выражения \(36^{\log_{6}{5}}\)

Решение:

\(36^{\log_{6}{5}}=\)

                              

Сразу пользоваться свойством \(a^{\log_{a}{c}}=c\) мы не можем, так как в основании степени и в основании логарифма – разные числа. Однако мы знаем, что \(36=6^{2}\)

\(=(6^{2})^{\log_{6}{5}}=\)

 

Зная формулу \((a^{m})^{n}=a^{m\cdot n}\), а так же то, что множители можно менять местами, преобразовываем выражение

\(=6^{2\cdot\log_{6}{5}}=6^{log_{6}{5}\cdot2}=(6^{log_{6}{5}})^{2}=\)

 

Вот теперь спокойно пользуемся основным логарифмическим тождеством.

\(=5^{2}=25\)

     

Ответ готов.

Ответ: \(25\)

Основные методы решения

Существует множество способов решения таких конструкций. Например, большинство учителей в школе предлагают такой способ: Сразу выразить функцию () по формуле

Да, безусловно, решение получится правильным. Однако проблема этой формулы состоит в том, что большинство учеников не понимают, откуда она берется и почему именно букву а мы возводим в букву .

В результате я часто наблюдаю очень обидные ошибки, когда, например, эти буквы меняются местами. Данную формулу нужно либо понять, либо зубрить, причем второй способ приводит к ошибкам в самые неподходящие и самые ответственные моменты: на экзаменах, контрольных и т. д.

Именно поэтому всем своим ученикам я предлагаю отказаться от стандартной школьной формулы и использовать для решения логарифмических уравнений второй подход, который, как вы уже наверняка догадались из названия, называется канонической формой.

Идея канонической формы проста. Давайте еще раз посмотрим на нашу задачу: слева у нас есть log, при этом под буквой имеется в виду именно число, а ни в коем случае не функция, содержащая переменную х. Следовательно, на эту букву распространяются все ограничения, которые накладываются на основание логарифма. а именно:

С другой стороны, из того же самого уравнения мы видим, что логарифм должен быть равен числу , и вот на эту букву никаких ограничений не накладывается, потому что он может принимать любые значения — как положительные, так и отрицательные. Все зависит от того, какие значения принимает функция ().

И вот тут мы вспоминаем наше замечательное правило, что любое число может быть представлено в виде логарифма по основанию а от а в степени :

Как запомнить эту формулу? Да очень просто. Давайте запишем следующую конструкцию:

Разумеется, что при этом возникают все ограничения, которые мы записали вначале. А теперь давайте воспользуемся основным свойством логарифма, и внесем множитель в качестве степени а. Получим:

В результате исходное уравнение перепишется в следующем виде:

Вот и все. Новая функция уже не содержит логарифма и решается стандартными алгебраическими приемами.

Конечно, кто-то сейчас возразит: а зачем вообще было придумывать какую-то каноническую формулу, зачем выполнять два дополнительных ненужных шага, если можно было сразу перейти от исходной конструкции к итоговой формуле? Да уже хотя бы затем, что большинство учеников не понимают, откуда берется эта формула и, как следствие, регулярно допускают ошибки при ее применении.

А вот такая последовательность действий, состоящая из трех шагов, позволяет вам решить исходное логарифмическое уравнение, даже если вы не понимаете, откуда берется та самая итоговая формула. Кстати, канонической формулой называется именно эта запись:

Удобство канонической формы состоит еще и в том, что ее можно применять для решения очень широкого класса логарифмических уравнений, а не только простейших, которые мы рассматриваем сегодня.

Ссылка на основную публикацию