Формулы приведения

Тригонометрические формулы сложения углов

cos (α — β) = cos α · cos β + sin α · sin β

sin (α + β) = sin α · cos β + sin β · cos α 

sin (α — β) = sin α · cos β — sin β · cos α 
cos (α + β) = cos α · cos β — sin α · sin β 

Тангенс и котангенс суммы углов альфа и бета могут быть преобразованы по следующим правилам преобразования тригонометрических функций:

Тангенс суммы углов равен дроби, числитель которой — сумма тангенса первого и тангенса второго угла, а знаменатель — единица минус произведение тангенса первого угла на тангенс второго угла.

Тангенс разности углов равен дроби, числитель которой равен разности тангенса уменьшаемого угла и тангенса вычитаемого угла, а знаменатель — единице плюс произведение тангенсов этих углов.

Котангенс суммы углов равен дроби, числитель которой равен произведению котангенсов этих углов плюс единица, а знаменатель равен разности котангенса второго угла и котангенса первого угла.

Котангенс разности углов равен дроби, числитель которой — произведение котангенсов этих углов минус единица, а знаменатель равен сумме котангенсов этих углов.

Данные тригонометрические тождества удобно применять, когда нужно вычислить, например, тангенс 105 градусов (tg 105). Если его представить как tg (45 + 60), то можно воспользоваться приведенными тождественными преобразованиями тангенса суммы углов, после чего просто подставить табличные значения тангенса 45 и тангенса 60 градусов.

Формулы тригонометрии

Тригонометрические формулы – список основных формул

Познакомьтесь с основными тригонометрическими формулами, перепишите себе все таблицы формул и всегда держите их перед глазами, изучая тригонометрию.

Основные тригонометрические тождества

Разберитесь с основными тригонометрическими тождествами, запомните формулы и рассмотрите их вывод.

Формулы приведения

Научитесь пользоваться формулами приведения, их запоминанию способствует мнемоническое правило, посмотрите на примеры применения формул приведения.

Формулы сложения в тригонометрии

Разберитесь в формулах сложения, рассмотрите их доказательство и конкретные примеры их применения.

Формулы двойного угла

Дан список формул двойного угла, приведено их доказательство и показаны примеры применения, перечислены формулы других кратных углов: тройного, четверного и т.д.

Формулы половинного угла

Запомните еще ряд формул тригонометрии — формулы половинного угла, рассмотрите решения примеров с их использованием.

Формулы понижения степени

Рассмотрите формулы, позволяющие понижать степень тригонометрических функций, ознакомьтесь с их применением на практике.

Формулы суммы и разности синусов и косинусов

Дан вывод формул суммы синусов, суммы косинусов, разности синусов и разности косинусов, разобрано как они применяются.

Формулы произведения синусов, косинусов и синуса на косинус

Приведен список формул произведения синусов, косинусов и синуса на косинус, показано их доказательство и примеры использования.

Универсальная тригонометрическая подстановка

Познакомьтесь с формулами, выражающими тригонометрические функции через тангенс половинного угла, разберите их применение на примерах.

Формулы с arcsin, arccos, arctg и arcctg

Рассмотрите основные формулы, использующиеся при работе с обратными тригонометрическими функциями.

Произведение тригонометрических функций

В предыдущем разделе, когда мы выводили ф-лы для вычисления суммы синусов и косинусов, мы сначала получали уравнения:

Далее мы производили замену переменных sи t. Однако давайте вместо этого просто поделим первые два уравнения на двойку, а третье – на (– 2):

В случае с последней формулой мы воспользовались правилом, по которому знак минус перед дробью можно убрать, если в числителе поменять местами вычитаемое и уменьшаемое.

Получили ф-лы, которые позволяют заменять произведение тригонометрических ф-ций их суммой.

Задание. Преобразуйте произведение в сумму:

Решение.

На этом наше знакомство с основными тригонометрическими формулами заканчивается. Ещё раз напомним, что в рамках школьного курса заучивать все ф-лы не нужно, можно при необходимости пользоваться смотреть в справочник. Тригон-кие преобразования помогут в будущем при решении сложных тригон-ких уравнений.

В самом конце приведем перечень всех формул, выведенными в этом уроке:

Только усвоенная информация становится знанием. В этом вам помогут онлайн-курсы

Формулы приведения для тригонометрических функций

Формулы приведения – это формулы, позволяющие упростить сложные выражения тригонометрической функции.

Выражения типа π + t,  3π/2 – t,  π/2 + t и т.п. можно упростить настолько, что они будут состоять лишь из одного аргумента t. В предыдущих разделах мы имели дело с несколькими такими упрощениями – например, sin (π + t) = –sin t.

Формул приведения очень много. Запомнить их трудно – но самое главное, в этом нет необходимости. Достаточно запомнить одно-единственное правило – и вы легко сможете самостоятельно выводить формулы и упрощать выражения.

Правило приведения:

Для выражений π + t,   π – t,   2π + t,   2π – t Для выражений π/2 + t,   π/2 – t,   3π/2 + t,  3π/2 – t
  • В приведенном выражении следует сохранить тригонометрическую функцию преобразуемого выражения.
  • Перед полученной функцией следует поставить тот знак, который имела бы преобразуемая функция при условии, что 0
  • В приведенном выражении следует изменить тригонометрическую функцию преобразуемого выражения на противоположную
  • Перед полученной функцией следует поставить тот знак, который имела бы преобразуемая функция при условии, что 0

Обратите внимание: в левом и правом столбцах различаются только первые пункты правила. Вторые пункты абсолютно идентичны

Формулы приведения.

cos (π + t) = –cos t sin (π + t) = –sin t tg (π + t) = tg t ctg (π + t) = ctg t
cos (π – t) = –cos t sin (π – t) = sin t tg (π – t) = –tg t ctg (π – t) = –ctg t
cos (2π + t) = cos t sin (2π + t) = sin t tg (2π + t) = tg t ctg (2π + t) = ctg t
cos (2π – t) = cos t sin (2π – t) = –sin t tg (2π – t) = –tg t ctg (2π – t) = –ctg t
cos (π/2 + t) = –sin t sin (π/2 + t) = cos t tg (π/2 + t) = –ctg t ctg (π/2 + t) = –tg t
cos (π/2 – t) = sin t sin (π/2 – t) = cos t tg (π/2 – t) = ctg t ctg (π/2 – t) = tg t
cos (3π/2 + t) = sin t sin (3π/2 + t) = –cos t tg (3π/2 + t) = –ctg t ctg (3π/2 + t) = –tg t
cos (3π/2 – t) = –sin t sin (3π/2 – t) = –cos t tg (3π/2 – t) = ctg t ctg (3π/2 – t) = tg t

Примечание: Часто встречаются более сложные выражения, но они не меняют правила. Например, если cos (2π + t) = cos t, то cos (2π + 3t) = cos 3t.

Два правила формул приведения, примеры.

Формул приведения много, но все они подчиняются двум правилам:

Первое правило:

Для аргументов  функция меняется на кофункцию, т.е. синус на косинус и наоборот, тангенс на котангенс и наоборот.

Для аргументов  функция не меняется.

Примеры на первое правило:

Знак пока не учитываем, он определяется вторым правилом, пока важно понять, в каких случаях функция меняется на кофункцию, а в каких не меняется. 1) 

1) 

2) 

3) 

4) 

Для аргументов вида наименование функции следует изменить на кофункцию.

5) 

6) 

7) 

8) 

Для аргументов вида наименование функции не меняется.

Второе правило (для знака приведенной функции, функции угла ).

1) Считаем угол  острым,

2) Определяем четверть и знак в ней приводимой функции (функции слева).

3) Ставим этот знак перед приведенной к углу  функцией (функцией справа).

Примечание: Угол  может быть любым, острым мы его считаем условно, для применения правила.

Примеры на второе правило:

1)  

Рис. 2.

Угол  находится во второй четверти. Во второй четверти , ставим знак плюс.

2) 

Рис

Угол  находится в третьей четверти. В третьей четверти  ставим знак минус.

3) 

Рис. 4.

Угол  находится во второй четверти. Во второй четверти  ставим знак минус.

4) 

Рис. 5.

Угол  находится в четвёртой четверти. В четвёртой четверти  ставим знак минус.

5) 

Рис. 6.

Угол  находится в третьей четверти. В третьей четверти  ставим знак минус.

6) 

Рис. 7.

Угол  находится во второй четверти, во второй четверти  ставим знак минус.

7) 

Рис. 8.

Угол  находится во второй четверти. Во второй четверти  ставим знак минус.

8) 

Рис. 9.

Угол  находится в четвёртой четверти. В четвёртой четверти  ставим знак минус.

Итак, мы рассмотрели различные примеры применения первого и второго правил формул приведения.

Формулы двойного и половинного аргумента

Теперь перейдем к формулам двойного аргумента и следствиям из них. Напомним:

Получить формулы для тангенса и котангенса двойного угла очень просто. Этот прием мы уже неоднократно использовали сегодня  в уроке. Расписываем по определению:

По сути, мы получили формулу для тангенса двойного угла. Ее можно преобразовать и к другому виду, разделив числитель и знаменатель на :

Получилась многоэтажная дробь, разберем ее числитель и знаменатель отдельно:

В итоге тангенс двойного угла мы выразили только через тангенс одинарного.

Аналогичным образом можно поступить и с котангенсом.

Задание 7. Найти , если .

Решение

Обратим внимание, что аргументы отличаются в 2 раза. Значит, нам понадобятся формулы двойного угла или же следствия из них – формулы половинного угла

Способ 1. Попробуем использовать формулы двойного угла:

По условию, это выражение равно :

Тут у нас косинус квадрат и синус квадрат. Для них мы знаем еще одно соотношение – основное тригонометрическое тождество:

Из этих двух соотношений мы можем найти значения  и . Сложив их, получим:

Тогда:

Требуется найти . Как обычно, расписываем по определению:

Способ 2. Можно использовать формулы половинного аргумента. Тогда  и  можно сразу выразить:

Ответ: .

Вторым способом получилось быстрее, но нужно помнить больше формул. Каждый сам может выбрать более удобный для себя способ решения: больше запоминать, но быстрее решать или же запоминать меньше, но тогда решение может оказаться длиннее.

Уметь применять формулы двойных аргументов нужно как слева направо, так и справа налево. Слева направо это сделать проще, а вот справа налево их нужно «увидеть». Вспомните: похожая ситуация была с формулами сокращенного умножения. Найти выражение вида  просто: увидел – применил формулу. А вот в обратную сторону выражение вида  нужно еще заметить.

Итак, посмотрим на правые части формул двойных аргументов и подумаем, на что же нам обращать внимание

Для синусов справа стоит произведение синуса и косинуса с одинаковыми аргументами

Именно на это мы будет обращать внимание. Умножить и разделить выражение на  – это не проблема

Для косинусов справа стоит разность квадратов. Не путайте с основным тригонометрическим тождеством – там сумма квадратов.

Задание 8. Найти значение выражения:

Решение

Видим произведение косинуса и синуса одного аргумента. Это показатель того, что нужно применить формулу синуса двойного угла. Не хватает двойки перед выражением. Поэтому умножим и разделим выражение на :

Теперь можем применить формулу:

Далее нужно применить формулы приведения. Можете самостоятельно потренироваться это делать. В итоге вы должны получить ответ . Если ответ не совпал, смотрите решение ниже.

Ответ: .

Использование формул приведения

Выделим в дроби целую часть:

Тогда:

У нас по-прежнему в аргументе не острый угол. Попробуем еще раз выделить :

Осталось применить формулу приведения для отрицательных углов и найти значение по таблице:

Тогда:

Список литературы

  1. «Алгебра и начала математического анализа. 10-11 классы. Базовый и углубленный уровни. Учебник. ФГОС», АО «Издательство «Просвещение» Алимов Ш.А., Колягин Ю.М., Ткачева М.В. и др. 10–11.
  2. «Математика: алгебра и начала математического анализа, геометрия. Алгебра и начала математического анализа». 10-11 классы. Учебник для общеобразовательных организаций (базовый уровень). В 2 ч., ООО «ИОЦ МНЕМОЗИНА» Ч.1.: Мордкович А.Г., Семенов П.В.; Ч.2.: Мордкович А.Г. и др., под ред. Мордковича А.Г. 10–11.
  3. Алгебра и начала математического анализа. 10 класс, АО «Издательство «Просвещение» Никольский С.М., Потапов М.К., Решетников Н.Н. и др. 10.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Интернет-портал cleverstudents.ru
  2. Интернет-портал ru.solverbook.com
  3. Интернет-портал yaklass.ru

Домашнее задание

  1. Вычислить:   
  2. Вычислить, если известно, что :   
  3. Доказать тождество:   

Формулы приведения. Как запомнить?

Не пугайтесь, учить их не надо, как и многие другие формулы  в курсе математики. Лишней информацией голову забивать не нужно, необходимо  запоминать «ключики» или законы, и вспомнить или вывести нужную формулу проблемой не будет. Кстати, когда я пишу в статьях «… нужно выучить!!!»  – это значит, что  действительно,  это необходимо  именно выучить.

Если вы с формулами приведения не знакомы, то простота их вывода вас приятно удивит – есть «закон», при помощи которого это легко сделать. И любую из 32 формул вы напишите за 5 секунд.

Перечислю лишь некоторые задачи, которые будут на ЕГЭ по математике, где без знания этих формул есть большая вероятность потерпеть фиаско в решении. Например:

  • задачи на решение прямоугольного треугольника, где речь идёт о внешнем угле, да и задачах на внутренние углы некоторые из этих формул тоже необходимы.
  • задачи на вычисление значений тригонометрических выражений; преобразования числовых тригонометрических выражений; преобразования буквенных тригонометрических выражений.
  • задачи на касательную и геометрический смысл касательной, требуется формула приведения для тангенса, а также другие задачи.
  • стереометрические задачи, по ходу решения не редко требуется определить синус или косинус угла, который лежит в пределах от 90 до 180 градусов.

И это лишь те моменты, которые касаются ЕГЭ. А в самом курсе алгебры есть множество задач, при решении которых, без знания формул приведения просто не обойтись.

Так что же к чему приводится и как оговоренные формулы упрощают для нас решение задач?

Например, вам нужно определить синус, косинус, тангенс или котангенс любого угла от  0 до 450 градусов

Формулы приведения:

Угол альфа лежит пределах от 0 до 90 градусов.

Итак, необходимо уяснить «закон», который здесь работает:

Определите знак функции в соответствующей четверти.

Напомню их:

Запомните следующее:

Функция изменяется на кофункцию

Функция на кофункцию не изменяется

Что означает понятие — функция изменяется на кофункцию?

Ответ: синус меняется на косинус или наоборот, тангенс на котангенс или наоборот.

Теперь по представленному закону запишем несколько формул приведения самостоятельно:

Данный угол лежит в третьей четверти, косинус в третьей четверти отрицателен. Функцию на кофункцию не меняем, так как у нас 180 градусов, значит:

  • Угол лежит в третьей четверти, косинус в третьей четверти отрицателен. Меняем функцию на кофункцию, так как у нас 270 градусов.
  • Угол лежит в первой четверти, синус в первой четверти положителен. Не меняем функцию на кофункцию, так как у нас 360 градусов.
  • Угол лежит во второй  четверти, синус во второй  четверти положителен. Не меняем функцию на кофункцию, так как у нас 180 градусов.

Проработайте мысленно или письменно каждую формулу, и вы убедитесь, что ничего сложного нет.

В статье на решение прямоугольного треугольника был отмечен такой факт  –  синус одного острого угла в прямоугольном треугольнике равен косинусу другого острого угла в нём.

И наоборот – косинус одного острого угла в прямоугольном треугольнике равен синусу другого острого угла в нём. Вот вам и подтверждение этого с помощью формул приведения.

Конечно, определить  значения углов можно и без формул приведения, по тригонометрической окружности. И если вы умеете это делать, то очень хорошо. Но поняв, как работают формулы приведения, вы сможете делать это очень быстро.

В дальнейшем, применяя свойство периодичности, четности (нечётности) вы без труда определите значение любого угла: 10500, -7500, 23700 и любые другие. Статья об этом в будущем обязательно будет, не пропустите!

Когда в решениях задач буду использовать формулы приведения, то обязательно буду ссылаться на эту статью, чтобы вы всегда смогли освежить в памяти представленную выше теорию. На этом всё. Надеюсь, материал был вам полезен.

Формулы приведения. Как быстро получить любую формулу приведения

Формулы приведения разработаны для углов, представленных в одном из следующих видов: (pi2+a), (pi2-a), (π+a), (π-a), (3pi2}+a), (3pi2-a), (2π+a) и (2π-a).

Аналогично их можно использовать для углов представленных в градусах: (90^°+a), (90^°-a), (180^°+a), (180^°-a), (270^°+a), (270^°-a), (180^°+a), (180^°-a). К счастью, учить наизусть формулы привидения вам не придется, потому что есть легкий и надежный способ вывести нужную за пару секунд.

Для начала обратите внимание, что все формулы имеют похожий вид:

Здесь нужно пояснить термин «кофункция» — это та же самая функция с добавлением или убиранием приставки «ко-». То есть, для синуса кофункцией будет косинус, а для косинусасинус. С тангенсом и котангенсом – аналогично.

Таким образом, например, синус при применении этих формул никогда не поменяется на тангенс или котангенс, он либо останется синусом, либо превратиться в косинус. А котангенс никогда не станет синусом или косинусом, он либо останется котангенсом, либо станет тангенсом. И так далее.

Едем дальше. Так как исходная функция и ее аргумент нам обычно даны, то весь вывод нужной формулы сводится к двум вопросам:

  • как определить знак перед конечной функцией (плюс или минус)?
  • как определить меняется ли функция на кофункцию или нет?

Основное тригонометрическое тождество

Несложно догадаться, что синус и косинус угла – это величины, связанные друг с другом. Отложим на единичной окружности произвольный угол α и опустим из точки А перпендикуляр на ось Ох, в некоторую точку В:

Изучим треугольник АОВ. Он прямоугольный, а потому для него можно записать теорему Пифагора:

АВ2 + ОВ2 = ОА2

Мы рассматриваем единичную окружность, а потому ОА = 1, ОВ = соsα, AB = sinα. Подставив эти величины в равенство, получим тождество:

sin2α + соs2α = 1

Его называют основным тригонометрическим тождеством, ведь именно оно связывает значение двух прямых тригонометрических ф-ций – синуса и косинуса.

Задание. В прямоугольном треугольнике есть угол α. Известно, что sin α = 0,8. Чему равен соsα?

Решение. Подставим в основное тригон-кое тождество значение sinα = 0,8 и получим уравнение:

sin2α + соs2α = 1

0,82 + соs2α = 1

0,64 + соs2α = 1

соs2α = 1 – 0,64

соs2α = 0,36

соsα = – 0,6 или соsα = 0,6

Нашли два возможных значения косинуса. Но по условию α – это острый угол, ведь в прямоугольном треугольнике угол не может быть больше 90°. То есть угол α относится к первой четверти, а потому его косинус положителен. Значит, соsα = 0,6.

Ответ: 0,6.

Рассмотренный пример показал, что одному заданному значению синуса соответствует сразу два противоположных друг другу значения косинуса. Верно и обратное. Действительно, отложим по оси Ох некоторую величину соsα и проведем вертикальную линию, чтобы найти соответствующие ему значения синуса. Она пересечет единичную окружность в двух точках с противоположными ординатами:

По этой причине при решении задач на использование основного тригон-кого тождества обычно указывают, к какой четверти относится угол α.

Задание. Вычислите sinα, если соsα = 0,28 и α принадлежит IV четверти.

Решение.

sin2α + соs2α = 1

0,282 + sin2α = 1

0,0784 + sin2α = 1

sin2α = 1 – 0,0784

sin2α = 0,9216

sin α = –0,96 или sin α = 0,96

Так как α принадлежит IV четверти, то sinα должен быть отрицательным, поэтому sinα = – 0,96.Напомним, что в IV четверти значение косинуса положительно, ведь соответствующая ей дуга единичной окружности располагается правее оси Оу, то есть абсциссы точек, принадлежащих ей, положительны.

Ответ: – 0,96.

Задание. Найдите tgα, если sinα = 5/13 и π/2

Решение. Здесь задача уже в два действия! Сначала определим соsα:

sin2α + соs2α = 1

соs2α = 1 – sin2α = 1 – (5/13)2 = 169/169 – 25/169 = 144/169

соsα = – 12/13 или соsα = 12/13

Условие π/2

Далее находим тангенс, просто деля синус на косинус:

tgα = sinα:соsα = (5/13):(12/13) = (5/13)•(13/12) = 5/12

Ответ: 5/12

Рассмотренный пример показал нам, что, зная синус, можно рассчитать не только косинус, но и тангенс. А возможно ли совершить обратное действие, найти по тангенсу синус или косинус? Да, но для этого нужно получить новую тригонометрическую формулу.

Запишем тождество

sin2α + соs2α = 1

Далее поделим его на величину соs2α:

Крайнее левое слагаемое – это величина tg2α, а следующая дробь равна единице, так как у неё совпадают числитель и знаменатель:

В итоге нам удалось получить ф-лу, которая связывает значение тангенса и косинуса угла. Есть такая формула и для котангенса. Для ее получения необходимо поделить основное тригон-кое тождество на sin2α:

Задание. Известно, что tgα = 0,75. Найдите соsα и sinα, если угол α принадлежит III четверти.

Решение.

Просто подставляем в ф-лу известное значение тангенса и решаем получившееся уравнение. Для простоты вычислении заменим десятичную дробь 0,75 на обычную 3/4:

Так как угол относится к III четверти, где косинус отрицателен, то

соsα = – 0,8

Синус угла найдем, используя основное тригон-кое тождество:

sin2α + соs2α = 1

sin2α = 1 – соs2α = 1 – (– 0,8)2 = 1 – 0,64 = 0,36

sinα = – 0,6 или sinα = 0,6

С учетом того, что в III четверти синус становится отрицательным, следует выбрать вариант sinα = – 0,6

Ответ: sinα = – 0,6; соsα = – 0,8.

Иногда ф-лы используют не для вычисления значений тригон-ких выражений, а для упрощения выражений. Из тождества sin2α + соs2α = 1 несложно получить из выражения

sin2α = 1 – соs2α

и

соs2α = 1 – sin2α

которые помогают в работе с длинными ф-лами.

Задание. Упростите выражение

4sin2α + 9соs2α – 6

таким образом, чтобы в нем не содержалось синуса.

Решение. Произведем замену sin2α = 1 – соs2α:

4sin2α+ 9соs2α – 6 = 4(1 – соs2α)+ 9соs2α – 6 =

= 4 – 4 соs2α + 9соs2α – 6 = 5соs2α – 2

Видим, что получилось значительно более простое выражение.

Ответ: 5соs2α – 2.

Задание. Избавьтесь от синуса в выражении

sin4α – соs4α

Решение. Воспользуемся ф-лой :

sin4α – соs4α = (sin2α – соs2α)(sin2α + соs2α) = (sin2α – соs2α)•1 =

= 1 – соs2α– соs2α = 1 – 2 соs2α

Ответ:1 – 2 соs2α.

Задание. Упростите дробь

Решение.

Ответ: ctg6α.

Для достижения наилучшего результата важно структурировать знания. В этом вам помогут онлайн-курсы по математике

Формулы приведения. Быстро и легко!

Тригонометрия.Формулы приведения.

Формулы приведения не нужно учить их нужно понять. Понять алгоритм их вывода.

Возьмем единичную окружность и расставим все градусные меры (0°; 90°; 180°; 270°; 360°) на ней.

Разберем в каждой четверти функции sin(a) и cos(a). Запомним, что функцию sin(a) смотрим по оси Y, а функцию cos(a) по оси X.

В первой четверти видно, что функция sin(a)>0, потому что ось Y положительна в этой четверти. И функция cos(a)>0, потому что ось X положительна в этой четверти.

Первую четверть можно описать через градусную меру, как (90-α) или (360+α).

Во второй четверти видно, что функция sin(a)>0, потому что ось Y положительна в этой четверти.
А функция cos(a)

В четвертой четверти видно, что функция sin(a)0, потому что ось X положительна в этой четверти.Четвертую четверть можно описать через градусную меру, как (270+α) или (360-α).

Теперь рассмотрим сами формулы приведения.

Запомним простой алгоритм:

  • Четверть. (Всегда смотрите в какой вы четверти находитесь).
  • Знак. (Относительно четверти смотрите положительны или отрицательный функции косинуса или синуса).
  • Если у вас есть в скобочках (90° или π/2) и (270° или 3π/2), то функция меняется.

И так начнем разбирать по четвертям данный алгоритм.

Выясни чему будет равно выражение cos(90-α)

Рассуждаем по алгоритму:

  • Четверть первая.
  • В первой четверти знак у функции косинуса положительный.
  • В скобочках есть (90° или π/2), то функция меняется с косинуса на синус.

Будет cos(90-α) = sin(α).

Ссылка на основную публикацию