Значения аркфункций. таблицы

Способы определения[править]

Геометрическое определениеправить

Файл:Trig functions.gif Рис. 2Определение тригонометрических функций

Рис. 3Численные значения тригонометрических функций угла в тригонометрической окружности с радиусом, равным единице

Обычно тригонометрические функции определяются геометрически. Пусть нам дана декартова система координат на плоскости, и построена окружность радиуса с центром в начале координат . Всякий угол можно рассматривать как поворот от положительного направления оси абсцисс до некоторого луча , при этом направление поворота против часовой стрелки считается положительным, а по часовой стрелке — отрицательным. Абсциссу точки обозначим , ординату обозначим (см. рисунок).

  • Синусом называется отношение
  • Косинусом называется отношение
  • Тангенс определяется как
  • Котангенс определяется как
  • Секанс определяется как
  • Косеканс определяется как

Ясно, что значения тригонометрических функций не зависят от величины радиуса окружности в силу свойств подобных фигур. Часто этот радиус принимают равным величине единичного отрезка, тогда синус равен просто ординате , а косинус — абсциссе . На рисунке 3 показаны величины тригонометрических функций для единичной окружности.

Если  — вещественное число, то синусом в математическом анализе называется синус угла, радианная мера которого равна , аналогично для прочих тригонометрических функций.

Определение тригонометрических функций для острых угловправить

Рис. 4Тригонометрические функции острого угла

В школьном курсе геометрии тригонометрические функции
острого угла определяются как отношения сторон прямоугольного треугольника. Пусть OAB — прямоугольный треугольник с острым углом α. Тогда:

  • Синусом угла называется отношение (отношение противолежащего катета к гипотенузе).
  • Косинусом угла называется отношение (отношение прилежащего катета к гипотенузе).
  • Тангенсом угла называется отношение (отношение противолежащего катета к прилежащему).
  • Котангенсом угла называется отношение (отношение прилежащего катета к противолежащему).
  • Секансом угла называется отношение (отношение гипотенузы к прилежащему катету).
  • Косекансом угла называется отношение (отношение гипотенузы к противолежащему катету).

Построив систему координат с началом в точке , направлением оси абсцисс вдоль и в случае необходимости изменив ориентацию (перевернув) треугольник так, чтобы он находился в первой четверти системы координат, и затем, построив окружность с радиусом, равным гипотенузе, сразу находим, что такое определение функций приводит к тому же результату, что и предыдущее.

Данное определение имеет некоторое методическое преимущество, так как не требует введения понятия системы координат, но также и такой крупный недостаток, что невозможно определить тригонометрические функции даже для тупых углов, которые необходимо знать при решении элементарных задач о тупоугольных треугольниках. (см.: Теорема синусов, Теорема косинусов).

Тригонометрические функции являются функциями с периодами для синуса, косинуса, секанса и косеканса, и для тангенса и котангенса.
Тригонометрические функции любого угла можно свести к тригонометрическим функциям острого угла, используя их периодичность и так называемые .
Это необходимо, например, для нахождения значений тригонометрических функций по таблицам, поскольку в таблицах обычно приводятся значения только для острых углов.

Разложение в ряды

  • arcsin⁡x=x+x36+3×540+⋯ =∑n=∞(2n)!4n(n!)2(2n+1)x2n+1{\displaystyle \displaystyle \arcsin x=x+{\frac {x^{3}}{6}}+{\frac {3x^{5}}{40}}+\cdots \ =\sum _{n=0}^{\infty }{\frac {(2n)!}{4^{n}(n!)^{2}(2n+1)}}x^{2n+1}} для всех |x|≤1{\displaystyle \left|x\right|\leq 1}
  • arccos⁡x=π2−arcsin⁡x=π2−∑n=∞(2n)!4n(n!)2(2n+1)x2n+1{\displaystyle \displaystyle \arccos x={\pi \over 2}-\arcsin x={\pi \over 2}-\sum _{n=0}^{\infty }{\frac {(2n)!}{4^{n}(n!)^{2}(2n+1)}}x^{2n+1}} для всех |x|≤1{\displaystyle \left|x\right|\leq 1}
  • arctg⁡ x=x−x33+x55−⋯ =∑n=1∞(−1)n−12n−1x2n−1{\displaystyle \displaystyle \operatorname {arctg} \ x=x-{\frac {x^{3}}{3}}+{\frac {x^{5}}{5}}-\cdots \ =\sum _{n=1}^{\infty }{\frac {(-1)^{n-1}}{2n-1}}x^{2n-1}} для всех |x|≤1{\displaystyle \left|x\right|\leq 1}

Преобразования аркфункций с использованием их основных свойств

Теперь перейдем к серии заданий, в которых нам придется использовать преобразования аркфункций с использованием их основных свойств.

Задача №6. Вычислить .

Для решения воспользуемся основными свойствами указанных аркфункций, только обязательно проверяя при этом соответствующие им ограничения.

а)

б) .

Ответ. а) ; б) .

Задача №7. Вычислить .

Типичная ошибка в данном случае – это сразу же написать в ответ 4. Как мы указывали в предыдущем примере, для использования основных свойств аркфункций необходимо проверить соответствующие ограничения на их аргумент. Мы имеем дело со свойством:

 при

Но . Главное на этом этапе решения не подумать, что указанное выражение не имеет смысла и его нельзя вычислить. Ведь четверку, которая является аргументом тангенса, мы можем уменьшить при помощи вычитания периода тангенса, и это не повлияет на значение выражения. Проделав такие действия, у нас появится шанс уменьшить аргумент так, чтобы он вошел в указанный диапазон.

, т.к.  поскольку , следовательно, , т.к. .

Ответ. .

Задача №8. Вычислить.

В указанном примере мы имеем дело с выражением, которое похоже на основное свойство арксинуса, но только в нем присутствуют кофункции. Его надо привести к виду синус от арксинуса или косинус от арккосинуса. Поскольку преобразовывать прямые тригонометрические функции проще, чем обратные, перейдем от синуса к косинусу с помощью формулы «тригонометрической единицы».

Как мы уже знаем:

В нашем случае в роли . Вычислим для удобства сначала .

Перед подстановкой его в формулу выясним ее знак, т.е. знак исходного синуса. Синус мы должны вычислить от значения арккосинуса, каким бы это значение ни было, мы знаем, что оно лежит в диапазоне . Этому диапазону соответствуют углы первой и второй четвертей, в которых синус положителен (проверьте это сами с помощью тригонометрической окружности).

Ответ..

На сегодняшнем практическом занятии мы рассмотрели вычисление и преобразование выражений, содержащих обратные тригонометрические функции

Функция котангенс и ее график

И завершаем рассмотрением функции:

Основные свойства этой функции:

1) Область определения  кроме , где . По таблице значений тригонометрических функций мы уже знаем, что  не существует. Это утверждение можно обобщить, учитывая период котангенса;

2) Область значений , т.е. значения котангенса не ограничены;

3) Функция нечетная ;

4) Функция монотонно убывает в пределах своих веток, которые похожи на ветки тангенса;

5) Функция периодична с периодом 

Построим график функции . При этом, как и для тангенса, удобно начинать построение с изображения вертикальных асимптот графика в точках, которые не входят в область определения, т.е.  и т.д. Далее изображаем ветки котангенса внутри каждой из образованных асимптотами полосок, прижимая их к левой асимптоте и к правой. В этом случае учитываем, что каждая ветка монотонно убывает. Все ветки аналогично тангенсу изображаем одинаково, т.к. функция имеет период, равный .

Литература[править]

  • Бермант А. Ф. Люстерник Л. А. Тригонометрия. — М.: Наука, 1967.
  • Тригонометрические функции — статья из Большой советской энциклопедии. — М.: «Советская Энциклопедия», 1977. — Т. 26. — с. 204-206.
  • Бронштейн И. Н., Семендяев К. А. Прямолинейная тригонометрия // Справочник по математике. — Изд. 7-е, стереотипное. — М.: Государственное издательство технико-теоретической литературы, 1967. — С. 179—184.
  • Двайт Г. Б. Тригонометрические функции // Таблицы интегралов и другие математические формулы. — 4-е изд. — М.: Наука, 1973. — С. 70—102.
  • Кожеуров П. А. Тригонометрия. — М.: Физматгиз, 1963.
  • Маркушевич А. И. Замечательные синусы. — М.: Наука, 1974.
  • Тригонометрические функции // Энциклопедический словарь юного математика/ Ред. коллегия, Гнеденко Б.В. (гл. ред.), Савин А.П. и др. — М.: Педагогика, 1985 (1989). — С. 299–301–305. — 352 с., ил. ISBN 5-7155-0218-7 (стр. , — таблицы тригонометрических функций 0°–90°, в т.ч. в радианах)
  • Тригонометрические функции // Справочник по математике (для ср. уч. заведений)/ Цыпкин А.Г., под ред. Степанова С.А. — 3-е изд. — М.: Наука, Гл. редакция физ.-мат. литературы, 1983. — С. 240–258. — 480 с.

Функция arcctg


График функции y=arcctg⁡x{\displaystyle y=\operatorname {arcctg} x}

Арккота́нгенсом числа x называется такое значение угла y (в радианной мере измерения углов), для которого ctgy=x,yπ.{\displaystyle \operatorname {ctg} \,y=x,\quad 0

Функция y=arcctgx{\displaystyle y=\operatorname {arcctg} \,x} определена на всей числовой прямой, всюду непрерывна и ограничена. Она является строго убывающей и всюду положительной.

  • ctg⁡(arcctgx)=x{\displaystyle \operatorname {ctg} (\operatorname {arcctg} \,x)=x} при x∈R,{\displaystyle x\in \mathbb {R} ,}
  • arcctg⁡(ctgy)=y{\displaystyle \operatorname {arcctg} (\operatorname {ctg} \,y)=y} при yπ,{\displaystyle 0
  • D(arcctg⁡x)=(−∞;∞),{\displaystyle D(\operatorname {arcctg} x)=(-\infty ;\infty ),}
  • E(arcctg⁡x)=(;π).{\displaystyle E(\operatorname {arcctg} x)=(0;\pi ).}

Свойства функции arcctg

  • arcctg⁡(−x)=π−arcctg⁡x.{\displaystyle \operatorname {arcctg} (-x)=\pi -\operatorname {arcctg} x.} График функции центрально-симметричен относительно точки (;π2).{\displaystyle \left(0;{\frac {\pi }{2}}\right).} Функция является индифферентной (ни чётной, ни нечётной).
  • arcctg⁡x>{\displaystyle \operatorname {arcctg} x>0} при любых x.{\displaystyle x.}
  • arcctg⁡x={arcsin⁡11+x2,x⩾π−arcsin⁡11+x2,x{\displaystyle \operatorname {arcctg} x=\left\{{\begin{matrix}\arcsin {\frac {1}{\sqrt {1+x^{2}}}},\qquad x\geqslant 0\\\pi -\arcsin {\frac {1}{\sqrt {1+x^{2}}}},\qquad x
  • arcctg⁡x=π2−arctg⁡x.{\displaystyle \operatorname {arcctg} x=\pi /2-\operatorname {arctg} x.}

Получение функции arcctg

Дана функция y=ctgx{\displaystyle y=\operatorname {ctg} \,x}. На всей своей области определения она является кусочно-монотонной, и, значит, обратное соответствие y=arcctgx{\displaystyle y=\operatorname {arcctg} \,x} функцией не является. Поэтому рассмотрим промежуток, на котором она строго убывает и принимает все свои значения только один раз — (;π){\displaystyle (0;\pi )}. На этом отрезке y=ctgx{\displaystyle y=\operatorname {ctg} \,x} строго убывает и принимает все свои значения только один раз, следовательно, на интервале (;π){\displaystyle (0;\pi )} существует обратная функция y=arcctgx{\displaystyle y=\operatorname {arcctg} \,x}, график которой симметричен графику y=ctgx{\displaystyle y=\operatorname {ctg} \,x} на отрезке (;π){\displaystyle (0;\pi )} относительно прямой y=x.{\displaystyle y=x.}

График арккотангенса получается из графика арктангенса, если последний отразить относительно оси ординат (то есть заменить знак аргумента, x→−x{\displaystyle x\rightarrow -x}) и сместить вверх на π/2; это вытекает из вышеупомянутой формулы arcctg⁡x=arctg⁡(−x)+π2.{\displaystyle \operatorname {arcctg} x=\operatorname {arctg} (-x)+\pi /2.}

Определение тригонометрических функций.

Тригонометрические функции изначально связывались с соотношениями сторон в прямоугольном треугольнике. У них есть только один аргумент угол (1-н из острых углов треугольника).

Соотношения сторон и их связь с функциями:

  • Синус — противолежащий катет к гипотенузе.
  • Косинус — прилежащий катет к гипотенузе.
  • Тангенс — противолежащий катет к прилежащему.
  • Котангенс — прилежащий катет к противолежащему.
  • Секанс — гипотенуза к прилежащему катету.
  • Косеканс — гипотенуза к противолежащему катету.

Благодаря этим определениям легко вычислять значение функций для острых углов, т.е. в интервале 0 — 90° (0 — π/2 рад.).

Свойства тригонометрических функций[править]

Простейшие тождестваправить

Основная статья: Тригонометрические тождества

Поскольку синус и косинус являются соответственно ординатой и абсциссой точки, соответствующей на единичной окружности углу α, то, согласно уравнению единичной окружности или теореме Пифагора, имеем:

Это соотношение называется основным тригонометрическим тождеством.

Деля это уравнение на квадрат косинуса и синуса соответственно имеем далее:

Косинус и секанс — чётные. Остальные четыре функции — нечётные, то есть:

Формулы приведенияправить

Формулами приведения называются формулы следующего вида:

Здесь  — любая тригонометрическая функция,  — соответствующая ей кофункция (то есть косинус для синуса, синус для косинуса, тангенс для котангенса, котангенс для тангенса, секанс для косеканса и косеканс для секанса), n — целое число. Перед полученной функцией ставится тот знак, который имеет исходная функция в заданной координатной четверти при условии, что угол α острый, например:

или что то же самое

Некоторые формулы приведения:

Значения тригонометрических функций суммы и разности двух углов:

Аналогичные формулы для суммы трёх углов:

Формулы для кратных угловправить

Формулы двойного угла:

Формулы тройного угла:

Прочие формулы для кратных углов:

следует из формулы дополнения и формулы Гаусса для Гамма-функции.

Из формулы Муавра можно получить следующие общие выражения для кратных углов:

где  — целая часть числа ,  — биномиальный коэффициент.

Формулы половинного угла:

Произведенияправить

Формулы для произведений функций двух углов:

Аналогичные формулы для произведений синусов и косинусов трёх углов:

Формулы для произведений тангенсов и котангенсов трёх углов можно получить, поделив правые и левые части соответствующих равенств, представленных выше.

Существует представление:

где угол находится из соотношений:

Ссылка на основную публикацию