Графики тригонометрических функций. тангенс, котангенс

Как найти тангенс по клеточкам

Учитывая первое определение, можно определить, как найти тангенс угла по клеточкам. Рисунок дополняется перпендикулярными линиями (строится высота), затем считается количество клеточек в полученном прямоугольном треугольнике на катетах, противолежащем и прилежащем искомому углу, а затем берётся их отношение.

Благодаря второму определению, задачу, как найти тангенс угла, можно решить, минуя таблицы и построение прямоугольных треугольников. Достаточно знать синус и косинус, связанные между собой основным тригонометрическим тождеством:

Из формулы тангенсов, записывающей кратко второе определение

и основного тригонометрического тождества можно понять, как найти тангенс, зная только косинус или синус угла.

Достаточно поделить основное тригонометрическое тождество на квадрат косинуса, подставить формулу тангенса. В результате получится зависимость тангенса и косинуса:

Если выразить в последнем случае косинус, то запишется связь между тангенсом и синусом:

Удачи вам! До скорых встреч на страницах блога KtoNaNovenkogo.ru

Подборки по теме

  • Вопросы и ответы
  • Использую для заработка
  • Полезные онлайн-сервисы
  • Описание полезных программ

Использую для заработка

Основные тригонометрические тождества

Тригонометрические функции (синус, косинус, тангенс, котангенс) однозначно определяют острый угол. Это значит, что если нам известно значение хотя бы одной из этих функций, то мы можем найти и сам острый угол, и значение оставшихся трех тригонометрических функций (см. рис. 1).

Рис. 1. Взаимосвязь тригонометрических функций

Взаимосвязь тригонометрических функций:

Например, глядя на определения тангенса и котангенса, легко заметить, что:

Потому что , и наоборот.

Можно переписать в эквивалентном виде:

Если мы знаем, что , то сразу скажем: . Нам даже не надо искать само значение угла.

Кроме того, несложно заметить, что:

И аналогично:

Мы уже почти научились по значению одной тригонометрической функции угла находить остальные. Нужно только связать между собой синус и косинус.

Вспомним, что для прямоугольного треугольника верна теорема Пифагора:

Чтобы перейти к формулам для синуса и косинуса, разделим обе части этого равенства на . Получим:

Откуда, по определению:

Можно получить и другие формулы, связывающие тригонометрические функции одного угла. Например, если мы хотим связать тангенс и косинус, то, взяв формулу

, поделим обе части на , получим:

Откуда:

Аналогично можно получить формулу:

Полученные нами формулы называются основными тригонометрическими тождествами. С их помощью можно, зная значение одной из тригонометрических функций острого угла, найти значения трех остальных. С примером решения такой задачи можно ознакомиться ниже.

Вычисление значений тригонометрических функций

Предположим, что нам известно значение синуса острого угла:

Найдем значения остальных тригонометрических функций этого угла.

Зная синус, несложно найти косинус, используя формулу:

Подставляем, получаем:

Поскольку косинус острого угла, по определению, – это отношение длин двух сторон, то он может принимать только положительные значения. Значит,

Теперь найти тангенс и котангенс не составит проблем:

Можно было действовать и по-другому, например найти котангенс через синус, используя формулу:

Потренируйтесь самостоятельно находить значения остальных тригонометрических функций острого угла по известному тангенсу или котангенсу.

Возникает вопрос: зачем нужно рассматривать целых четыре функции, если можно использовать одну, а все остальные при необходимости выражать через эту одну?

Конечно, можно. Вопрос только в удобстве. Если какая-то конструкция часто используется, то ее удобно обозначить отдельно, а также вывести ее свойства, чтобы использовать их при решении конкретных задач.

К примеру, длину можно было бы измерять только в метрах. Но расстояние между городами или размеры телефона в них измерять не очень удобно. Не говоря уже про размеры бактерий или расстояния между планетами. Поэтому люди используют разные единицы измерения для одной и той же величины (миллиметры, километры, дюймы, мили, световые года и т. д.) в зависимости от удобства при решении той или иной задачи (см. рис. 2).

Рис. 2. Использование различных единиц измерения

Такая же ситуация с тригонометрическими функциями – оказалось, что эти  соотношения используются настолько часто, что удобнее ввести и изучать их отдельно, чем выражать через одно.

Более того, можно ввести и другие тригонометрические функции, но они не прижились именно из-за того, что редко встречаются при решении практических задач. Подробнее о них ниже.

vetkaДругие тригонометрические функции

Наблюдательный человек заметит, что при определении тригонометрических функций мы перебрали не все комбинации (см. рис. 3): можно гипотенузу разделить на каждый из катетов.

Рис. 3. Взаимосвязь тригонометрических функций

Взаимосвязь тригонометрических функций:

Действительно, можно ввести еще две функции – секанс и косеканс:

Несложно заметить, что мы получили функции, обратные синусу и косинусу.

В наше время эти функции практически не используют. Слишком просто их заменить синусом и косинусом. Кстати, по этой причине в некоторой литературе не выписываются свойства для котангенса – считается, что его проще выражать через тангенс.

На самом деле, никакой принципиальности в том, чтобы использовать именно эти, а не другие функции, нет. Просто при решении различных задач чаще встречались именно выражения, содержащие синусы, косинусы, тангенсы и котангенсы, поэтому им дали отдельные названия и их подробно изучают.

Свойства синуса.

  • Область определения функции — множество всех действительных чисел: D(y)=R.
  • Множество значений — интрервал : E(y) = .
  • Функция y=sin(α) — нечетная: sin(−α)=−sinα.
  • Функция оказывается периодической, самый маленький неотрицательный период соответствует 2π: sin(α+2π)=sin(α).
  • График функции пересекает ось Ох при α=πn,n∈ Z.
  • Промежутки знакопостоянства: y>0 при (2πn+0;π+2πn),n∈Z и y при (π+2πn;2π+2πn),n∈Z.
  • Функция является непрерывной и у нее есть производная с любым значением аргумента: (sinα)′=cosα.
  • Функция y=sinα возрастает при α∈(−π/2+2πn;π/2+2πn) n∈Z, и убывает при α∈(π2+2πn;3π2+2πn), n∈Z.
  • Минимум функции при α=−π/2+2πn, n∈Z, а максимум при α=π/2+2πn, n∈Z.

Свойства sin, cos, tg и ctg

Свойства синуса (sin), косинуса (cos), тангенса(tg) и котангенса(ctg):

  1. Определение знака

    • Если α-угол I или II координатной четверти, то sin α > 0;
    • Если α-угол III или IV координатной четверти, то sin α ;

    • Если α-угол I или IV координатной четверти, то cos α > 0;
    • Если α-угол II или III координатной четверти, то cos α ;

    • Если α-угол I или III координатной четверти, то tg α > 0 и ctg α > 0;
    • Если α-угол II или IV координатной четверти, то tg α и ctg α .

  2. Синус, тангенс и котангенс — нечетные функции; косинус — четная функция.

    • Для чётной функции справедливо равенство: y(-x) = y(x). Примеры чётных функций: y = cos(x), y = x2.
    • Для НЕчётной функции справедливо равенство: y(-x) = -y(x). Примеры НЕчётных функций: y = sin(x), y = x.
  3. При изменении угла на целое число оборотов значения тригонометрических функций не меняются.

    • У sin α и cos α период – $2\pi$ или 360°.
    • У tg α и ctg α – $\pi$.

1 радиан — это мера центрального угла, которому соответствует длина дуги, равная длине радиуса окружности.

Связь радианов с градусами: $1° =\frac{\pi}{180}\text{рад; 1 рад }=\frac{180°}{\pi}$.

Таблица синусов, косинусов, тангенсов и котангенсов для углов 0, 30, 45, 60, 90, … градусов

позволяют указать значения тригонометрических функций для углов и 90 градусов: , а котангенс нуля градусов не определен, и, а тангенс 90 градусов не определен.

В курсе геометрии из прямоугольных треугольников с углами 30, 60 и 90 градусов, а также 45, 45 и 90 градусов находятся :, и.

Занесем указанные значения тригонометрических функций для углов , 30, 45, 60 и 90 градусов (, π/6, π/4, π/3, π/2 радиан) в таблицу, назовем ее таблицей основных значений синуса, косинуса, тангенса и котангенса.

Используя формулы приведения, только что составленную таблицу синусов, косинусов, тангенсов и котангенсов можно расширить, дополнив значениями тригонометрических функций для углов 120, 135, 150, 180, 210, 225, 240, 270, 300, 315, 330 и 360 градусов (0, π/6, π/4, π/3, π/2, …, 2π радиан). При этом она принимает следующий вид.

Опираясь на , таблицу основных значений тригонометрических функций можно расширить еще, заменив углы 0, 30, 45, 60, 90, …, 360 градусов соответственно на , где z – любое целое число. Из такой таблицы можно найти значения для всех углов, которым соответствуют точки единичной окружности, указанные на чертеже ниже.

Основные значения тригонометрических функций, собранные в заполненной выше таблице, желательно знать наизусть, так как они очень часто используются при решении задач.

Как пользоваться таблицей синусов, косинусов, тангенсов и котангенсов?

Использовать таблицу синусов, косинусов, тангенсов и котангенсов основных углов 0, 30, 45, 60, 90, …, 360 градусов очень просто – она дает непосредственные значения тригонометрических функций, находящиеся на пересечении соответствующей строки, указывающей название тригонометрической функции, и столбца, указывающего данное значение угла.

Например, значение косинуса угла 60 градусов находится на пересечении строки, в крайней левой ячейке которой находится запись cos, и столбца, в верхней ячейке которого записан угол 60 градусов. Так из таблицы находим, что значение косинуса 60 градусов равно одной второй. Для разъяснения приведем графическую иллюстрацию.

Расширенная таблица основных значений тригонометрических функций используется аналогично. С помощью расширенной таблицы основных значений синуса, косинуса, тангенса и котангенса можно сразу указать, например, чему равен тангенс угла 1 020 градусов. Он равен минус корню из трех, так как . Проиллюстрируем это.

Теорема косинусов

Рассмотрим еще один инструмент, который поможет нам находить неизвестные элементы треугольника. Мы уже оценили, насколько полезна теорема Пифагора для вычисления длины неизвестной стороны прямоугольного треугольника. Но хочется иметь аналогичный инструмент для произвольного треугольника.

Вот треугольник  с острым углом . Обозначим длины его сторон малыми буквами . Из вершины  проведем высоту  (см. рис. 30) (для определенности будем считать, что она лежит внутри треугольника, случай тупоугольного треугольника разберите самостоятельно – все рассуждения там аналогичны).

Рис. 30. Рассматриваемый треугольник  с проведенной высотой

Тогда, из определения:

По теореме Пифагора:

Уберем на чертеже лишние построения и посмотрим на полученное тождество:

Рис. 31. Рассматриваемый треугольник

Квадрат стороны треугольника равен сумме квадратов двух других минус удвоенное произведение этих сторон, умноженное на косинус угла между ними.

Это утверждение носит название теоремы косинусов. По виду она очень похожа на теорему Пифагора для прямоугольных треугольников. На самом деле, теорема косинусов – это и есть обобщенная теорема Пифагора для произвольного треугольника.

Действительно, воспользуемся теоремой косинусов для прямоугольных треугольников:

Но, как мы знаем, , поэтому получаем теорему Пифагора:

Теорема Пифагора – частный случай теоремы косинусов для прямоугольных треугольников.

Можно ли тогда теорему Пифагора доказывать, используя теорему косинусов? Нет. Ведь при доказательстве теоремы косинусов мы использовали теорему Пифагора. Получится замкнутый круг: мы доказали  через , а  через .

Заключение

Теоремы синусов и косинусов – удобные инструменты для решения задач: для нахождения недостающих элементов в треугольниках. С их помощью можно находить неизвестные стороны и углы треугольников. На ближайших уроках мы обязательно потренируемся это делать.

Список литературы

1. Александров А.Д., Вернер А.Л., Рыжик В.И. Геометрия, 8 класс. Учебник. – М.: «Просвещение», 2018.

2. Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В./Под ред. Садовничего В.А. Геометрия, 8 класс. Учебник. – М.: «Просвещение», 2018.

3. Мерзляк А.Г., Полонский В.Б., Якир М.С. Геометрия, 8 класс. Учебник. – М.: издательский центр «ВЕНТАНА-ГРАФ», 2018

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

1. Интернет-портал cleverstudents.ru (Источник)

2. Интернет-портал calc.ru (Источник)

3. Интернет-портал yaklass.ru (Источник)

Домашнее задание

1. Упростить выражение: 

2. Каким является треугольник со сторонами  – остроугольным, тупоугольным или прямоугольным?

3. Найти биссектрисы треугольника, если одна из его сторон равна , а прилежащие к этой стороне углы  и .

Таблица тангенсов от 181° до 360°

tg(181°) 0.0175
tg(182°) 0.0349
tg(183°) 0.0524
tg(184°) 0.0699
tg(185°) 0.0875
tg(186°) 0.1051
tg(187°) 0.1228
tg(188°) 0.1405
tg(189°) 0.1584
tg(190°) 0.1763
tg(191°) 0.1944
tg(192°) 0.2126
tg(193°) 0.2309
tg(194°) 0.2493
tg(195°) 0.2679
tg(196°) 0.2867
tg(197°) 0.3057
tg(198°) 0.3249
tg(199°) 0.3443
tg(200°) 0.364
tg(201°) 0.3839
tg(202°) 0.404
tg(203°) 0.4245
tg(204°) 0.4452
tg(205°) 0.4663
tg(206°) 0.4877
tg(207°) 0.5095
tg(208°) 0.5317
tg(209°) 0.5543
tg(210°) 0.5774
tg(211°) 0.6009
tg(212°) 0.6249
tg(213°) 0.6494
tg(214°) 0.6745
tg(215°) 0.7002
tg(216°) 0.7265
tg(217°) 0.7536
tg(218°) 0.7813
tg(219°) 0.8098
tg(220°) 0.8391
tg(221°) 0.8693
tg(222°) 0.9004
tg(223°) 0.9325
tg(224°) 0.9657
tg(225°) 1
tg(226°) 1.0355
tg(227°) 1.0724
tg(228°) 1.1106
tg(229°) 1.1504
tg(230°) 1.1918
tg(231°) 1.2349
tg(232°) 1.2799
tg(233°) 1.327
tg(234°) 1.3764
tg(235°) 1.4281
tg(236°) 1.4826
tg(237°) 1.5399
tg(238°) 1.6003
tg(239°) 1.6643
tg(240°) 1.7321
tg(241°) 1.804
tg(242°) 1.8807
tg(243°) 1.9626
tg(244°) 2.0503
tg(245°) 2.1445
tg(246°) 2.246
tg(247°) 2.3559
tg(248°) 2.4751
tg(249°) 2.6051
tg(250°) 2.7475
tg(251°) 2.9042
tg(252°) 3.0777
tg(253°) 3.2709
tg(254°) 3.4874
tg(255°) 3.7321
tg(256°) 4.0108
tg(257°) 4.3315
tg(258°) 4.7046
tg(259°) 5.1446
tg(260°) 5.6713
tg(261°) 6.3138
tg(262°) 7.1154
tg(263°) 8.1443
tg(264°) 9.5144
tg(265°) 11.4301
tg(266°) 14.3007
tg(267°) 19.0811
tg(268°) 28.6363
tg(269°) 57.29
tg(270°) — ∞
tg(271°) -57.29
tg(272°) -28.6363
tg(273°) -19.0811
tg(274°) -14.3007
tg(275°) -11.4301
tg(276°) -9.5144
tg(277°) -8.1443
tg(278°) -7.1154
tg(279°) -6.3138
tg(280°) -5.6713
tg(281°) -5.1446
tg(282°) -4.7046
tg(283°) -4.3315
tg(284°) -4.0108
tg(285°) -3.7321
tg(286°) -3.4874
tg(287°) -3.2709
tg(288°) -3.0777
tg(289°) -2.9042
tg(290°) -2.7475
tg(291°) -2.6051
tg(292°) -2.4751
tg(293°) -2.3559
tg(294°) -2.246
tg(295°) -2.1445
tg(296°) -2.0503
tg(297°) -1.9626
tg(298°) -1.8807
tg(299°) -1.804
tg(300°) -1.7321
tg(301°) -1.6643
tg(302°) -1.6003
tg(303°) -1.5399
tg(304°) -1.4826
tg(305°) -1.4281
tg(306°) -1.3764
tg(307°) -1.327
tg(308°) -1.2799
tg(309°) -1.2349
tg(310°) -1.1918
tg(311°) -1.1504
tg(312°) -1.1106
tg(313°) -1.0724
tg(314°) -1.0355
tg(315°) -1
tg(316°) -0.9657
tg(317°) -0.9325
tg(318°) -0.9004
tg(319°) -0.8693
tg(320°) -0.8391
tg(321°) -0.8098
tg(322°) -0.7813
tg(323°) -0.7536
tg(324°) -0.7265
tg(325°) -0.7002
tg(326°) -0.6745
tg(327°) -0.6494
tg(328°) -0.6249
tg(329°) -0.6009
tg(330°) -0.5774
tg(331°) -0.5543
tg(332°) -0.5317
tg(333°) -0.5095
tg(334°) -0.4877
tg(335°) -0.4663
tg(336°) -0.4452
tg(337°) -0.4245
tg(338°) -0.404
tg(339°) -0.3839
tg(340°) -0.364
tg(341°) -0.3443
tg(342°) -0.3249
tg(343°) -0.3057
tg(344°) -0.2867
tg(345°) -0.2679
tg(346°) -0.2493
tg(347°) -0.2309
tg(348°) -0.2126
tg(349°) -0.1944
tg(350°) -0.1763
tg(351°) -0.1584
tg(352°) -0.1405
tg(353°) -0.1228
tg(354°) -0.1051
tg(355°) -0.0875
tg(356°) -0.0699
tg(357°) -0.0524
tg(358°) -0.0349
tg(359°) -0.0175
tg(360°) -0

Решение примера

Дано:  – прямоугольный (), .

Найти:

Решение

Воспользуемся основным тригонометрическим тождеством: . Подставим в него известное нам значение синуса: . Отсюда: . Так как косинус, по определению, – это отношение катета к гипотенузе, то он может быть только положительным, поэтому: .

Найдём теперь тангенс угла, пользуясь формулой: .

Ответ: .

На этом уроке мы рассмотрели понятия синуса, косинуса и тангенса острого угла прямоугольного треугольника, вывели некоторые их свойства и формулы связи между этими величинами. На следующем уроке мы познакомимся со значениями синуса, косинуса и тангенса для некоторых конкретных значений углов.

Список литературы

  1. Александров А.Д. и др. Геометрия, 8 класс. – М.: Просвещение, 2006.
  2. Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В. Геометрия, 8 класс. – М.: Просвещение, 2011.
  3. Мерзляк А.Г., Полонский В.Б., Якир С.М. Геометрия, 8 класс. – М.: ВЕНТАНА-ГРАФ, 2009.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Фестиваль педагогических идей «Открытый урок» (Источник).
  2. Xvatit.com (Источник).
  3. Egesdam.ru (Источник).

Домашнее задание

  1. № 133(а-г), 134(а-г), Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В. Геометрия, 8 класс. – М.: Просвещение, 2011.
  2. Найдите синус, косинус и тангенс наименьшего угла египетского треугольника.
  3. Найдите косинус и тангенс острого угла прямоугольного треугольника, синус которого равен .
Ссылка на основную публикацию